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Relativistic elasticity

General relativistic elasticity was formulated in the mid-20th century
due to the necessity to study astrophysical problems such as defor-
mations of neutron star crusts, which can be modelled by axially
symmetric metrics.

Relevant contributions to the theory of general relativistic elasticity
were given, for example, by Carter and Quintana (1972), Kijowski
and Magli (1992), Beig and Schmidt (2003), Karlovini and Samuels-
son (2003).

The here presented work is based on Magli (1993) and Brito, Carot
and Vaz (2010).
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Relativistic elasticity

Configuration mapping

The space-time configuration of the material is described by the
mapping

Ψ : M −→ X .

• (M, gab) space-time with coordinate system {xa}, a = 0, 1, 2, 3

• (X , γAB) material space with material metric γAB and
coordinate system {yA}, A = 1, 2, 3
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Relativistic elasticity

Pulled-back material metric

kab = Ψ∗γAB = yA
a yB

b γAB

yA
a =

∂yA

∂xa
is the relativistic deformation gradient.

Velocity field of the matter

The velocity field of the matter ua ∈ TpM is defined by the condi-
tions

uayA
a = 0, uaua = −1, u0 > 0.
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Relativistic elasticity

Relativistic strain tensor

The operator K a
b = −uaub + ka

b can be used to measure the state
of strain of the material.

The relativistic strain tensor is defined by

sab =
1

2
(hab − kab) =

1

2
(gab − Kab),

where hab = gab + uaub.

The material is in an unstrained state if sab = 0.
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Relativistic elasticity

Energy-momentum tensor

T a
b = ρ δab −

∂ρ

∂I3
detK ha

b +

(
TrK

∂ρ

∂I2
−
∂ρ

∂I1

)
ka

b −
∂ρ

∂I2
ka

c kc
b

• ρ = εv energy density

• ε particle number density

• v = v(I1, I2, I3) constitutive equation

I1, I2 and I3 are the invariants of K :

I1 = 1
2 (TrK − 4) , I2 = 1

4

[
TrK 2 − (TrK )2

]
+ 3, I3 = 1

2 (detK − 1) ,

which can be written in terms of the eigenvalues of K .
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Cylindrically symmetric space-time

Space-time (M , g)

• Cylindrically symmetric metric g

ds2 = −e2ν(r)dt2 + e2µ(r)dr2 + e2µ(r)dz2 + e2ψ(r)dφ2

• Coordinates: xa = {t, r , z , φ}

• Pulled-back material metric k

dΣ2 = dr̃2 + dz2 + r̃2dφ2

• Coordinates on X : yA = {r̃ , z̃ , φ̃},

r̃ = r̃(r) = r , z̃ = z , φ̃ = φ
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Cylindrically symmetric space-time

The operator K a
b = −uaub + ka

b is given by

K a
b =


1 0 0 0
0 e−2µ 0 0
0 0 e−2µ 0
0 0 0 r2e−2ψ

 .
It has one eigenvalue equal to 1 and the other eigenvalues are

η = e−2µ

τ = r2e−2ψ,

where η has algebraic multiplicity two.
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Cylindrically symmetric space-time

Invariants of K

I1 =
1

2
(TrK − 4) =

1

2
(2η+ τ− 3)

I2 =
1

4

[
TrK 2 − (TrK )2

]
+ 3 = −

1

2

(
η2 + 2ητ+ 2η+ τ

)
+ 3

I3 =
1

2
(detK − 1) =

1

2

(
η2τ− 1

)
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Cylindrically symmetric space-time

Energy-momentum tensor

T 0
0 = ρ,

T 1
1 = ρ−

∂ρ

∂I3
η2τ+

∂ρ

∂I2
(1 + η+ τ)η−

∂ρ

∂I1
η,

T 2
2 = T 1

1,

T 3
3 = ρ−

∂ρ

∂I3
η2τ+

∂ρ

∂I2
(1 + 2η)τ−

∂ρ

∂I1
τ.
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Einstein-field equations

G 0
0 = 8πT 0

0: 1
8π

µ ′′+ψ ′′+ψ ′2

e2µ = εv

G 1
1 = 8πT 1

1: 1
8π

µ ′ν ′+µ ′ψ ′+ν ′ψ ′

e2µ = −εη∂v∂η

G 2
2 = 8πT 2

2: 1
8π

ν ′2+ν ′′+ψ ′′+ψ ′2+ν ′ψ ′−µ ′ν ′−µ ′ψ ′

e2µ = −εη∂v∂η

G 3
3 = 8πT 3

3: 1
8π
ν ′2+ν ′′+µ ′′

e2µ = −2ετ ∂v∂τ
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Einstein-field equations

Setting E = lnη = −2µ and T = ln τ = 2 ln r − 2ψ,
one gets

∂ ln v

∂E
= −

µ ′ν ′ + µ ′ψ ′ + ν ′ψ ′

µ ′′ +ψ ′′ +ψ ′2

∂ ln v

∂T
= −

1

2

ν ′2 + ν ′′ + µ ′′

µ ′′ +ψ ′′ +ψ ′2
.

Since T 2
2 = T 1

1, it follows that

2µ ′ν ′ + 2µ ′ψ ′ − ν ′2 − ν ′′ −ψ ′′ −ψ ′2 = 0.
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Einstein-field equations

In order for a constitutive equation v = v(η, τ) = v(E ,T ) to exist,
it must be that

∂2 ln v

∂T∂E
=
∂2 ln v

∂E∂T
.

Therefrom, one obtains

∂

∂T

[
−

1

µ ′

(
1

r
−ψ ′

)]
∂ ln v

∂T
= 0.
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Einstein-field equations

The case:

∂

∂T

[
−

1

µ ′

(
1

r
−ψ ′

)]
= 0 and

∂ ln v

∂T
= 0

leads to the conditions

ψ = ln(r) + k0µ+ k1 and T 3
3 = 0.
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Einstein-field equations

In order to avoid singularities at the axis of symmetry, one must
have e2ψ = r2L(r), where L(r) 6= 0 for r = 0, Carot (2000).

Then, one has

ψ(r) = ln(r) +
1

2
ln(L)

µ(r) =
1

2
ln(L)

ν(r) = −
1

4
ln(L) + constant.
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Einstein-field equations

The function L(r) must satisfy the condition

6L ′2Lr − 8L ′′′L2r2 − 8L ′′L2r + 16L ′′L ′Lr2 − 9L ′3r2 + 8L ′L2 = 0.

The constitutive function takes the form

v(r) = c exp

(∫
L ′2

−3L ′2r + 4LL ′ + 4L ′′Lr
dr

)
.
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