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@ The CMMR approximation method and some previous
applications

@ Double shell source: Stating the problem
@ Building the global solution

@ Its multipole moments and Kerr



CMMR method and applications

The method
@ It is a double perturbative method

o Post-Minkowskian: g(\, Q) = 1+ h(\, Q) with X\ a parameter
related with the strengh of the field.
o Slow rotation: A parameter related with the rotation speed, Q.

@ We can use to build global axisymmetric stationary solutions
@ It is analytical and then can be useful for theorists.
Some previous uses

@ Studied the viability as Kerr sources of
o Compact ball of constant density perfect fluid
o Polytropic perfect fluid ball
o Compact ball of perfect fluid with equation of state
p+(1—=n)p=po
o Confirmed that there is no assymptotically flat exterior for Wahlquist
metric.
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Characteristics of the source and vacuum
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Characteristics of the source and vacuum

Stationary: £ a timelike Killing field

Axisymmetry: ¢ a closed-orbits spacelike Killing field
Equatorial symmetry

Perfect fluid. No convective motion: u® = (§* + w (%)
Equation of state: 3 +(1—n)p=¢

Rigid motion (w = const)

Surface: r; = r; [1+ S; Q2Py(cos 6)]
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Characteristics of the source and vacuum

Stationary and axisymmetric + equatorial symmetry
Perfect fluid. No convective motion

Equation of state: po+ (1 —n)p=e

Rigid motion (w = const)

Surface: ry = r, [1+ S5 Q2P5(cos6)]
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Characteristics of the source and vacuum

@ Stationary and axisymmetric 4+ equatorial symmetry
e Vacuum

@ Assymptotically flat
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Double shell: General solutions

Vacuum solution

Bz
h—hmh+2z " (Tn+Dy) +2Z zn+z B2t = F2
n02

Core solution

h:hinh+Zmnrn(Tn+Dn)+Zjnrnzn+Zanr"E*n+anrHF*n

n=0 n=1 n=0 n=0

Shell solution

oo o0 oo oo
h:hinh+Zﬁ7nrn(Tn+Dn)+Z]nrnzn‘f'zénrnE*n"‘ZBnrnF*n
n=0 n=1 n=0 n=0
o0

J B,
+2Z (Tn+Dn)+2Z —Zy+ Y +3E,,+2+ Fa
n02
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Matching and results

After parametrizing the multipole moments such that

7 _
M,,—))\Q"r—n"7 JH%A%Q"#,

E\ Bs where X = XM 4 AX® 4 .
A, — AQ" pact By = M=

5]

and imposing the Lichnerowicz conditions [gu ]y = [0ags~]x = 0, we get

_ (1) 3 (r;2(€1 — 62) + f5262)
my’ = 5 ,
o
_(1) 2 (5/’,’31’52(61 — 62)2 =+ r55(761 — 262)62 =+ 3r,'5(€1 — 62)62)
2 - 9r%(e1 — €2)e2 — 2rs%ex(2e1 + 3€2) — 513152 (2612 + €162 — 3€22)
-1) 2 (ri(e1 — €2) + rs%e2)
./1 = 2

+ 02%x
(]

(5r, rs (61 . 62)62 + r55€2(261 + 362) — r,-5 (5612 — Te160 + 2622))
X
3!‘0 (9I’,’ (61 — 62)62 — 2r55€2(261 + 362) — 5r,-3r52 (2612 + €160 — 3622))

)
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After parametrizing the multipole moments such that

7 _
M,,—))\Q"r—n"7 JH%A%Q"#,

E\ Bs where X = XM 4 AX® 4 .
A, — AQ" pact By = M=

5]

and imposing the Lichnerowicz conditions [gu ]y = [0ags~]x = 0, we get

(1) _ 4 (5r,-3r52(51 — €)% + r3(Ter — 2€2)ex + 35 (€1 — 62)62)
3= 7 (9r;5(€1 — 62)62 — 2r5562(261 -+ 362) — 5r,-3rs2 (2612 + €167 — 3622))7

o ey — €) + re

0 r03 )

- 2 (r?(e1 — €2) + re2)

(1) _ i \€1 2 s €2 2
S = 5108 + Q7 x

—2r,? (5r;8(61 —€)? —8rdr3(e1 — €2)ex — rBea(2e1 + 362))
3r0% (9r%(€e1 — €2)ea — 2rs°ea(2€1 + 3€2) — 513152 (2612 + €162 — 3€22))’
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Matching and results

After parametrizing the multipole moments such that

7 _
M,,—))\Q"r—n"7 JH%A%Q"#,

E\ Bs where X = XM 4 AX® 4 .
A, — AQ" pact By = M=

5]

and imposing the Lichnerowicz conditions [gu ]y = [0ags~]x = 0, we get

(5r, (61 — 62)2 + 8r, (61 — 62)62 + rs 62(261 + 362))

ro® (9r, (61 — 62)62 —2r° 62(261 + 362) —5r3rs (261 + €160 — 3622))7
30 _ 1

3 7r07 (9r,'5(€1 — 62)62 — 2r5562(261 + 362) - 5!‘,‘3!‘52 (2612 + €160 — 3622))

X [Qrs2 (5r(e1 — €2)> + 571 (e1 — €2)e2

e —

X

+ 3r,-5r55(61 — 62)62 + r51062(2€1 + 362)) },
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Comparing with Kerr

Kerr multipole moments are given by: MXe™ = m(ia)"
If we relate them with ours we have

M = m 2 Ars Mo
ML = JHer — g N Y
Y — e Q23
M3Kerr = J3Kerr _ ma3 ours )\3/293,,;133
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Comparing with Kerr

Kerr multipole moments are given by: MXe™ = m(ia)"
If we relate them with ours we have

l\/lé(e” =m SELLCEEN ArsMo
M = Jier — ma N Y
Y — e Q23
M3Kerr = J3Kerr _ ma3 ours )\3/293,,;133
Kerr __ _ Y 20,27.\2 72
Mo™" = m = ArsMo 2 _ ()\3/ Qrih) _ 2023 1
K 3/20n - —mat=————= = -\ =
KT — ma = \32Qr2 ] ArsMo Mo

MK = —ma? = )\erf(/\_/lél) + )\l\_ﬂéz) +...) — /\_/lél) must be zero
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Comparing with Kerr

Kerr multipole moments are given by: MXe™ = m(ia)"
If we relate them with ours we have

l\/lé(e” =m L LN Ars M
ML = JHer — g N Y
Y — e Q23
M3Kerr = J3Kerr _ ma3 ours )\3/293,,;133
Kerr __ _ 'y -3
Mo™" = m = ArsMo 3 \5/203.4 1
K 3/2m 2 —ma’ = =N/, =5
JKem — ma = \3/2Qr2], Ms

J3 = /\3/2Q3rf(7§1) + /\]§2) +...) — 3§1) must be zero

j:gl):/\_ﬂz(l):0<:>61=€2=0
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Double Shell + singularity: General solutions

Vacuum solution

Bz
h—hmh+2z " (Tn+Dy) +2Z zn+z B2t = F2
n02

Core solution

h=hiun + ) (mn 4 é) (To+Do)+ > jnr"Zo+ Y anr"E*n+ > bor"F*,

n=0 n=1 n=0 n=0

Shell solution

oo o0 oo oo
h:hinh+Zmnrn(Tn+Dn)+Zjnrnzn+zanrnE*n+anrnF*n
n=0 n=1 n=0 n=0
o0

J B,
+2Z (Tn+Dn)+2Z —Zy+ Y +3E,,+2+ Fa
n02
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Double shell + singularity: Matching and results

After parametrizing the multipole moments such that

7 _
M,,—))\Q"r—n"7 Jn—))\%Q"#,

E\ E_Es where X = XM 4 AX® 4 .
A, — AQ" sl By = M=

5]

and imposing the Lichnerowicz conditions [gu ]y = [0ags~]x = 0, we get

_ (1) 3 (r;2(€1 — 62) + f5262)
my’ =

r02 ’
ﬁ'lgl) _ 2[‘,‘8(61 — 62) + 20Ar06r5262 =+ 20r03r,3r526162’
3ri8(e1 — €2)
~(1) _ 5r°rs® + 308 (61 — ) + 2r°r®(e1 — €2)
= 15r,10
L —4r? (r8(e1 — €2) + 10r%ez)

15[’07 ,'3 ’
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Double shell + singularity: Matching and results

After parametrizing the multipole moments such that

7 _
M,,—))\Q"r—n"7 Jn—))\%Q"#,

E\ E_Es where X = XM 4 AX® 4 .
A, — AQ" sl By = M=

5]

and imposing the Lichnerowicz conditions [gu ]y = [0ags~]x = 0, we get

=(1) _ 4r;10(61 — 62) + 40r08r5262

J3 o 35r05r,-5 ’

M(l) _ rs”€
0 r03 ’

__](1) _ 2r55€2 i Q 20!’08!’5262 -+ 2r, rs ( €1 + 62)
! 5r0° 1510 ’
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Double shell + singularity: Matching and results

After parametrizing the multipole moments such that

7 _
M,,—))\Q"r—nn7 Jn—))\%Q"#,

E\ E_Es where X = XM 4 AX® 4 .
A, — AQ" sl By = M=

5]

and imposing the Lichnerowicz conditions [gu ]y = [0ags~]x = 0, we get

_ rs® (F05 + ri®(e1 — 62))
- 3r010 ’

50 _ 2r8r (€1 — €2) + 20 r?ren
3 - 35[’012 ’
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Double shell + singularity: Comparing with Kerr

Adjusting M,

Kerr __ — \/ J J
M(:: = m= /\rs3l\/270 . _ ma? — _()\3/291:52.11)2 — )22 53‘{_12
Jl & — ma = \ / Qrle ArsMg Mo

M, = )\QQrf(l\_/lél) + )\/\_/72(2) +...) — /T/lél) must be zero

rs® (r® 4 ri®(e1 — €2))

In this case, I\_/Iél) = 3,10
0
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Double shell + singularity: Comparing with Kerr

MEE" = m = Ars iV } , (A3/2Qr27;)?

72
_ —mat=— s . \20%3 L
SR — ma = \3/2Qr2], ArsMo * Mo

M, = /\erf(/\_/lz(l) + /\I\_/Iéz) +...) — /\_/lél) must be zero

re> (r05 = I’;5(61 — 62))

In this case, l\_ﬂél) = 3,10
0

Adjusting J3
MEE™ = m = ArsMy

T = ma = X¥2Qr2 )

Mg

_73
_ ma3 _ _)\5/293 ;1_71
S = )\3/2Q3rf(._/§1) + )\33(,2) =) —— jél) must be zero
2r,-5r57(61 — 62) + 20r08r,-2r52€2
35I’012 ’

v
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Here, Jél) =




Double shell + singularity: Comparing with Kerr

Solving

o 10r® — r?r®
rs® (ro5 + (e — 62)) =0 a= 10rp3r,5
5,7 2.2 - 5
2r’rs"(e1 — €2) +20r%r%rle; =0 rs
10r03r,-2
so that the double shell 4 singularity configuration is compatible with
Kerr to this order

€y =

Adjusting J3
/\/I('ferr =m= ;M
J{(e” = ma= )\3/2Qr2._!1
J3 = /\3/2Q3rs4(._l3( ) J(2) ) — ._13(51) must be zero

J(l) 2r5r (€1 — €2) + 20re8r; 2[‘5262
35/’012
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Here,




@ We have used the CMMR approximation method to build two
double shell metrics

@ The first one is completely regular and cannot be a source of the
Kerr spacetime

© The second one has a singularity in the origin, and to the order
computed, is compatible with a Kerr exterior

@ We need and plan to compute extra orders to check if this behaviour
goes on and if it would be necessary to add extra singularities or
additional density discontinuities.
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