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WHY A THEORY OF MODIFIED GRAVITY?

To search for alternative geometrical descriptions of the present
universe, without resorting to dark matter and dark energy

To smooth singularities (BH’s, Big-Bang)
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Modified gravity

SOME WAYS TO MODIFIED GRAVITY:

Lovelock’s Lagrangians: polynomials in Riemann curvature that lead to
second order equations for the metric. However, they differ from General
Relativity only if the dimension is bigger than 4.

f(R) theories: for instance, the Lagrangian

L[g] ∝ R + αR2

departs from General Relativity if αR ∼> 1. This could work to modify the
dynamics at the big-bang scale. However, it would be unable to modify a
(R = 0) vacuum solution such as a BH. Worst yet, the dynamical
equations will result in 4th order equations.

“f(T )” theories or modified teleparallelism: they lead to second order
equations. They work whatever the dimension is. They could modify even
vacuum solutions.
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Elements of teleparallelism

Dynamical variables

The field of frames (tetrads or vierbeins): {ea(x)}, a = 0, 1, 2, 3

and their respective co-frames: {ea(x)}, eµa e
b
µ
.
= δba

Relation with the metric

The frame is orthonormal:

ηab = gµν e
µ
a e

ν
b

Then,

gµν = ηab e
a
µ e

b
ν ⇒

√
−g = det[eaµ]

.
= e

Dynamics for the tetrad induces dynamics for the metric.
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Elements of Teleparallelism

The gravitational field is encoded in the torsion instead of the curvature.

Weitzenböck connection

w

Γ µ
ρν

.
= eµa ∂νe

a
ρ ⇒

w

Riemann ≡ 0

The torsion is Tµνρ
.
=

w

Γ µ
ρν −

w

Γ µ
νρ = eµa (∂νe

a
ρ − ∂ρeaν)

Then, eaµ T
µ
νρ are the components of four exact 2-forms: Ta

.
= dea

Appendix
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Teleparallel equivalent of General Relativity

Lagrangian density

The Lagrangian density is quadratic in the torsion:

LT[ea] =
1

16πG
e S µν

ρ T ρµν
.
=

1

16πG
e S · T

where

S µν
ρ

.
= −1

4
(Tµνρ − T νµρ − T µν

ρ ) +
1

2
(δµρ T

θν
θ − δνρ T θµθ)

See, for instance, Hayashi and Shirafuji, PRD 19 (1979), 3524.

Equivalence between LT and LGR

LGR[ea] = LT[ea] + divergence

Example: flat FRW minisuperspace, eaµ = diag[N(t), a(t), a(t), a(t)],

Then
LT[N, a] ∝ −N−1 a ȧ2, LGR[N, a] ∝ −N−1 a ȧ2 + d

dt
(N−1 a2 ȧ)
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f(T ) theories

A f(T ) theory is a deformation of the teleparallel equivalent of General
Relativity:

f(T ) theories

LT =
e

16πG
S · T −→ LT =

e

16πG
f(S · T)

R.Ferraro and F. Fiorini, PRD 75 (2007) 084031.

R.Ferraro and F. Fiorini, PRD 78 (2008) 124019.

G.R. Bengochea and R.Ferraro, PRD 79 (2009) 124019.

E.V. Linder, PRD 81 (2010) 127301.
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R.F. and F.F., PRD 75 (2007) 084031, Inflation without inflaton

Deformation à la Born-Infeld

f(S · T) = λ

[√
1 +

2 S · T
λ

− 1

]

The scale factor a(t) of the flat modified FRW

cosmology is governed by the equation(
1− 12H2

λ

)− 1
2

− 1 =
16πG

λ
ρ

where H ≡ ȧ/a is the Hubble parameter.

The initial singularity is smoothed.

Hmax
.
= ĺım
t→−∞

H(t) =
√
λ/12 for state

equations p = w ρ with w > −1.

The particle horizon diverges; so the whole
universe is causally connected.

α ≡ Hmax/Ho, w = 1/3 (radiation)

Rafael Ferraro and Franco Fiorini The regular cosmic string in Born-Infeld gravity
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R.F. and F.F., PLB 692 (2010) 206, The taming of the conical singularity in 2+1 D

Cosmic string in GR

ds2 = d(t+ 4J θ)2 − dρ2 − (1− 4µ)2 ρ2 dθ2 − dz2

In (2+1) dimensions (z is absent), this metric solves the Einstein equations for

T 00 = µ δ(x, y) and T 0i = (J/2) εij ∂jδ(x, y).

So the solution is a particle of mass µ and spin J (a “cosmon”).

Deser, Jackiw and ’t Hooft, Ann. Phys. 152 (1984), 220.

No gravitational field surrounds the cosmon since the metric is manifestly flat.

The cosmon reveals itself through topological properties:

i) the deficit angle 8πµ (conical singularity),

ii) the existence of closed timelike curves (CTC) of constant (t, ρ, z):

ds
2

=

(
16J2

M2
− ρ

2

)
M

2
dθ

2
, M

.
= 1− 4µ

which means that curves with radio ρ < ρo
.
= 4J/M are CTC.

Rafael Ferraro and Franco Fiorini The regular cosmic string in Born-Infeld gravity
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R.F. and F.F., PLB 692 (2010) 206, The taming of the conical singularity in 2+1 D

The singular structure of cosmic strings can be prevented in modified gravity.

Born-Infeld gravity: determinantal Lagrangian density

L ∝ −λ
[√
|gµν − 2λ−1Fµν | −

√
|gµν |

]
−−−−→
λ→∞

√
|gµν | Tr(F )

In the context of teleparallelism we can use Fµν = αSµλρ T
λρ

ν + β Sλµρ T
λ ρ
ν ,

since Tr(F ) = (α+ β) S · T.

Thus, choosing α+ β = 1, it results

L ∝ e

[
S · T − λ−1

2
(S · T)2 + λ−1 F ν

µ F
µ
ν

]
+O(λ−2).

which shows that this theory differs from a f(T ) theory. This feature is essential for

our purpose because the cosmon has S · T = 0.

Rafael Ferraro and Franco Fiorini The regular cosmic string in Born-Infeld gravity
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R.F. and F.F., PLB 692 (2010) 206, The taming of the conical singularity in 2+1 D

The modified cosmic string

We propose the cylindrically symmetric tetrad

e0 = d(t+ 4Jθ) , e1 = Y (ρ) dρ , e2 = ρM dθ , e3 = dz,

So, the respective metric is

ds2 = d(t+ 4J θ)2 − Y 2(ρ)dρ2 − ρ2M2 dθ2 − dz2.

The function Y (ρ) is the sole difference between Born-Infeld determinantal gravity and GR.

Dynamical equations (α = 1, β = 0)

Y 2(ρ)− Y 3(ρ) = −16 J2

λM2

(
ρ2 − 16 J2

M2

)−2

↖ ρ2
o

Y (ρ) is defined for ρo ≤ ρ <∞.

Rafael Ferraro and Franco Fiorini The regular cosmic string in Born-Infeld gravity
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R.F. and F.F., PLB 692 (2010) 206, The taming of the conical singularity in 2+1 D

RESULTS

The modified cosmic string geometry is

curved instead of flat:

R(ρ) =
2Y ′(ρ)

ρ Y (ρ)3
,

RµνRµν =
1

2
R2, Rµνηπ R

νηπ
µ = R2

The curvature vanishes for ρ → ∞ and ρ → ρo

J is the source of curvature: R = 0⇔ J = 0, because J = 0 implies Y = 1.

The proper time to reach the minimal circle ρ = ρo is infinite: the conical

singularity has disappeared.

The closed timelike curves (CTC) have disappeared: since ρ > ρo then the curves
of constant (t, ρ, z) are always spacelike:

ds2 =

(
16J2

M2
− ρ2

)
M2 dθ2 < 0 .

Rafael Ferraro and Franco Fiorini The regular cosmic string in Born-Infeld gravity
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The closed timelike curves (CTC) have disappeared: since ρ > ρo then the curves
of constant (t, ρ, z) are always spacelike:

ds2 =

(
16J2

M2
− ρ2

)
M2 dθ2 < 0 .
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CONCLUSIONS

Teleparallelism is a nice formalism to generate theories of modified gravity,
since it always leads to second order dynamical equations.

f(T ) theories offer a way to modified gravity. However they can be unable
to smooth vacuum solutions like cosmic strings.

Born-Infeld determinantal gravity does smooth the singular structure of
spinning cosmic strings: the spacetime ends at an unreacheable ring of
radius proportional to J . Thus, neither conical singularities nor closed
timelike curves are left.

Thank you!
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Elements of Teleparallelism

Geometrical meaning of Weitzenböck connection

The covariant derivatives of a vector V = V a ea = V a eµa ∂µ = V µ ∂µ reduce to

w
∇νV µ = ∂νV

µ +
w
Γ µ
ρνV

ρ = eµa ∂νV
a

A vector V is parallel transported along a curve iff its components V a are constant on

the curve.

Weitzenböck connection is metric compatible:
w
∇νeµa ≡ 0.

Relation with the Levi-Civita connection. Geodesics.

Γ
w
λ
µν − Γ

L
λ
µν = −

1

2
(Tλµν − T λ

µ ν − T λ
ν µ)

.
= Kλ

µν

Geodesics: d2xλ

dτ2 + Γ
w
λ
µν

dxµ

dτ
dxν

dτ
= Kλ

µν
dxµ

dτ
dxν

dτ

The contorsion tensor Kλ
µν can be regarded as a gravitational field moving particles

away from Weitzenböck autoparallel lines.

Return
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The covariant derivatives of a vector V = V a ea = V a eµa ∂µ = V µ ∂µ reduce to

w
∇νV µ = ∂νV

µ +
w
Γ µ
ρνV

ρ = eµa ∂νV
a

A vector V is parallel transported along a curve iff its components V a are constant on

the curve.
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G.R. Bengochea and R.F., PRD 79 (2009) 124019, Dark torsion as the cosmic speed-up

Deformation à la Carroll et al.

f(S · T) = S · T − α

(−S · T)n

The modified (flat) FRW equation is

H2 − (2n+ 1) α

6n+1H2n
=

8

3
πGρ

which can be rephrased as(
H

Ho

)2n
[(

H

Ho

)2

− Ωmo(1 + z)3 − Ωro(1 + z)4

]
= 1−Ωmo−Ωro, Ωro = 5× 10−5

α is encoded in the difference 1− Ωmo − Ωro. In GR it is α = 0 and Ωmo + Ωro = 1.

The best fit for the data coming from SNIa, BAO and CMB is

Ωmo = 0,27 n = −0,10
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