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Introduction

@ Hilbert space of LQG is constructed with spin-networks (functions
over oriented graphs).

@ Our Goal: Dynamics for the simplest class of graphs in LQG.

e We consider 2 vertices linked with an arbitrary number of edges.
e Generalization of the Rovelli-Vidotto model: Physical framework
very similar to loop quantum cosmology.

@ Use the U(N) framework recently introduced
@ Results:
o Link between the U(N) operators and the holonomy ops. of LQG.
e Global U(N) symmetry to select the reduced space of
homogeneous/isotropic states.
e U(N)-invariant Hamiltonian operator encoding the dynamics of our
2-vertex model.
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Ej and Fj operators
@ Space of intertwiners with N legs and fixed total area J = > ;i :
7—[5\“,/) = @ Moy = @ Inv[V/' @ .. @ VIN]
>ili=d >ili=d

o Area conserving operators: E; = ala; + bl b;, =

Ej: 1) — #H)

@ Annihilation and creation ops. to move between the spaces Hﬁg’) :

Fij=(aibj—ab) : Fi=-F;
FHag 0 LAl g

@ Invariant under global SU(2) transformations, but they do
not commute anymore with the total area operator E = ), E;.

@ F; with E; form a closed algebra.
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The 2-vertex graph

@ A slight generalization of the model introduced by C. Rovelli and
F. Vidotto (related to models of quantum cosmology).

@ The simplest non-trivial graph for spin network states in LQG:
a graph with two vertices linked by N edges.

@ Hilbert space of the two intertwiners:

Hoo = HyoHn = D HY o 1Y = D Hieiy @ Hpp o
forlp {e iy



Matching conditions

@ Each edge must carry a unique SU(2) representation, thus the
spin j; seen from « or 8 must be the same.

&=EY—E® - o,

@ The Hilbert space of spin network states for this 2-vertex graph is:
29, — (@) (8)
H T @’th"jN ® Hh:"’jN
{i}
@ Operators acting on 2%, should be invariant under global SU(2)

transformations and they should commute with the matching
conditions &;.



Matching conditions

@ Each edge must carry a unique SU(2) representation, thus the
spin j; seen from « or 8 must be the same.

&=EY—E® - o,

@ The Hilbert space of spin network states for this 2-vertex graph is:
H=PH"
Uit

@ Operators acting on 2%, should be invariant under global SU(2)
transformations and they should commute with the matching
conditions &;.

@ Operators deforming consistently the boundary between « and g.
(8 _ a
o= VD, y=FORD. = AR
@ They commute with the matching conditions



Global u(N) algebra

@ We can introduce the operators: &; = E,./(.a) = Ej(,ﬁ)
o They form a u(N) algebra: [5/]', 5/(/] = (51';(5,'/ = 5,’/5;(/'.
@ & are part of this larger u(N) algebra.

@ Look for vectors in 24 which are invariant under this U(N) action.

Looking for a U(N) invariant subspace
The subspace of spin network states invariant under the U(N)-action:

Jo,Js

27‘[,'”\, = /I'IVU(N) [27'[} = /an(N) [H®2] = lan(N)

° Hf\f) are irreducible U(N)-representations
@ U(N)-invariance = J, = Js.
@ There exists a unique invariant vector |J) € 7-[5{,/) ® HS\‘/).

[2Hinv T @JENC‘J>J




Holonomy operator

@ Link between our operators e; and f; with the usual holonomy
operators of loop quantum gravity.

Holonomy operator:

1

. 1
XD = (f,]T + e+ 6+ f,-,-)

VE +1/E+1

“Dictionary” between holonomy and U(N) operators:

([E &, 11+ [E, ] + [E), ]+) ()

1 + 1
JETME,T i JETu/E,T
\/ﬁ\/ﬁ ﬁ\/ﬁ
VE +1 \/ﬁ JE T ,/E+1

1 .
(B 1= (61— 151+ 1) X

! - (i
s~ B 6 - (6,14 1) x
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Structure of U(N)-invariant operators on 2H,,

@ E=E® = E® isinvariant and E |J) = 2J|J).
@ We define the following operators

. ol B8 | @ B
e:Ze,-,:ZEg. Lee f:Zf,-j:ZFij(. S
if U] Ul

i

@ They obviously commute with the matching conditions.
@ They form a surprisingly simple algebra:

le.f] = —2(E+N—1)f,
[e,fq = 2ff(E+N-1),

[f,fq = 4(E+N)(e+2(E+N-1)).

@ Introduce a shifted operator e = e + 2(E + N —1).



Structure of U(N)-invariant operators on 2H,,

o E=E® = E®) jsinvariant and E |J) = 2J|J).
@ We define the following operators

B 0) (8 N N F@E®)
e:Ze,-,:ZE;, ', =2 =D R R
j j i

ij
@ They obviously commute with the matching conditions.
@ Introduce a shifted operator e = e + 2(E + N — 1).
@ Then the algebra reads:
[6,f] = —2(E+N+1)f,
[é, fT] = 2f{(E+N+1),

[f, ff] — 4(E+N)a.



Structure of U(N)-invariant operators on 2H,,

@ E=E(@ = E® isinvariantand E |J) = 2J|J).
@ We define the following operators

GEZQU ZE(Q)E(ﬁ)’ fEZﬁj:ZF,-/(-a)FU(.’B),
i ; ;

@ They obviously commute with the matching conditions.
@ Introduce a shifted operator e = e + 2(E + N — 1).
@ Our invariant Hilbert space 2H,,, is spanned by the states

Jj
[)un = 1¥]0) = (Z ) 0);

@ The states |J),, diagonalize e, while fT and f act respectively as
creation and annihilation operators.



Other operators

s/(2,R) operators
1 ~ 1

‘= VET2N—1) JE+2(N-1)
X_ = ! f 1
 VE+2(N-1) VE+2(N-1)

VE+2(N-1)
They satisfy a s/(2, R) Lie algebra:

[Z,X+] = X5,  [Xp,X_]=-2Z

VE+2(N-1)

v

Action
Z|J)y =(J+1)|J)

X_|J) = I+ 1) |J-1)
Xild) = VU + 1) +2)[J+ 1) |
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Other operators

s/(2,R) operators

1 ~
Z =

1

X 1

VET2IN=1) VET2N-T)

1

1

\/E+2(N—1)f\/E+2(N—1)

1

Xy = f1

VE+2(N-1) E+2(N-1)

They satisfy a s/(2, R) Lie algebra:

[Z,Xe] = +£Xe,  [Xi, X_]=

—2Z

v

Renormalized Operators

1
— =1

&\*
('D
al= &l

=l =

=l

Action

Z\|J)

X_|J) =

X |J) =

= (J+ 1))
VJIJ+1)|J-1)

DT +2)|J+1)

Action

2y
e
T4

e

&\*%

IJ)

1

= )

= )

|J_1>’

|J+1)

vJd > 1
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An ansatz for dynamics



Hamiltonian operator
@ Simplest U(N)-invariant ansatz:

H = \é+ (of + 5fT)

@ It corresponds to the evolution operator © of LQC.

@ Looking for eigenstates: three regimes (A > 0, cosw = —\/20):

@ The oscillatory regime: |o| > /2
@ The discrete regime: |o| < \/2
© The critical regime: o = £ /2



Hamiltonian operator
@ Simplest U(N)-invariant ansatz:

H = \é+ (of + 5fT)

@ It corresponds to the evolution operator © of LQC.

@ Looking for eigenstates: three regimes (A > 0, cosw = —\/20):
@ The oscillatory regime: |o| > /2
@ The discrete regime: |o| < \/2
© The critical regime: o = +)/2

@ H is unique up to a renormalization by a E-dependent factor.
@ We can propose a s/o Hamiltonian:
h = 1 H !
VE+2(N-1) E+2(N-1)

= A\Z+ (oX_+5X,.) € sl

@ ltis an element in the Lie algebra s/,.

@ It has the same three regimes as H.

@ It corresponds to the gravitational part of the LQC Hamiltonian
constraint Cyray
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H: The spectrum
@ The action of the Hamiltonian is:
HJ) = o) | +oy(J)|Jd—1)+cyp(J+1)|J+1)

) = (J+1)IN+J-1)
() = VIJ+ND)IN+J-1)(N+J-2)

@ Looking for the eigenstates:
Helty) =Y oy Held) = B aylJ)
Ap(J)ay :an(J)an + aw(JJ + Vayr1 = Pay
@ His positive if 2| < A.

© H is essentially self-adjoint as soon as 2|a| < .
© H has a strictly positive discrete spectrum when 2|o| < ).



H.: The critical regime

The critical regime: 2|o| = )\I

@ Looking for eigenstates:

20(J)ay + e 0p()ay_1 + € 0P(Jd + ey = Bay
@ LQC inspired ansatz:
(_1)J ié)JeikInJ; keR

@ Eigenvalues (strictly positive):

]
B =— + k>
B+
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H: Strong coupling

Strong coupling regime: 2|o| > /\I

@ The ansatz for the leading order of the eigenvectors:

1 ein

:J+c CEC

ay

@ The eigenvalue:
N , ,
B = <2 - c) (Ge " —oe™™)

@ The eigenvalues are complex !!

21
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Comparing with loop quantum cosmology

@ The 2-vertex graph is a perfect setting to derive a quantum
cosmology sector from the full LQG.

@ Gravitational part of the Hamiltonian constraint in LQC:
Cor|V) x2v|v) —v|v+4)—v|v—4),
@ Evolution operator in LQC (6 = v/vCyr/V):
O|v) x 2v2|v) — VB |v+4) — v3|v —4)
Analogies
@ © corresponds to H (coefficients grow as J?).

° Cg, corresponds to s/>-Hamiltonian h (coefficients grow as J).
@ Spectral properties will be very similar. Apply to our framework
techniques developed in LQC.

@ LQC operators for the flat case A = 0 correspond to our critical
regime with o = —\/2.

23




Cosmological constant
@ Gravitational part of the Hamiltonian constraint with A:

Cgr vy = (A(v+2)+A(v-2)) |v)—A(v+2)|v+4)—A(v—2)|v—4) —/\\7|v>
Viv) = Vov|v)  A(v) ~ 24y v.
@ Substitution at mathematical level: v = 4J

6|J) ~ 16(4Aof/\Vo)J2|J)732Ao(J+%)«/J(J+ 1)|J+1)~32A0(J—%)\/J(J —1)|J-1)
@ Comparison with H:

A= 16(4A0 — /\Vo), o=0 = —32A0

Different regimes
@ AN=0 = o= —)\/2. Critical regime.
@ N> 0,butcloseto 0 = 0 < A < 2|o|. Strong coupling regime.
@ AN<0 = \>2|o|. Weak coupling regime.
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Conclusions

The new U(N) framework represents a new way to study the
dynamics in LQG.

The model: 2 vertex (linked with N edges) glued by matching
conditions.

Global U(N) symmetry to select the isotropic’homogeneous
states |J). Deriving LQC from LQG?

Relation between U(N) operators and the usual holonomy
operators in LQG.

U(N) invariant Hamiltonian. Relation with LQC.
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