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Motivation

Motivation

In three dimensions, general relativity is topological.

B 1
167G

S / EABCEA A\ RBC[UJ]
>

Quantisation of such a theory is well understood.
Ildea: Try to write general relativity in 4D as a constrained topological theory

S = / BAB A Raplw] + A°C.[B):
>

the constraints should enforce BAB = 16}TG6ABCDEC A EP to recover GR.

Addition of a Holst term is straightforward; then need YAB — ﬁEA N EB.

AB _ 1 AB _ 7,AB CD
where X7 = E= (B € cpB )
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Motivation

Motivation (I1)
Traditional (Plebanski) formulation: Use quadratic constraints

AB~NCD
614BCYIDXJG,I) Ecd — Veabcd

These constraints have two separate sectors of solutions®

. 1
either Y48 = +ed A ef or 248 = jzieABCDeC A el

for some set of 1-forms e“. Classically, one can consistently remain within the
“GR" sector; quantum mechanically, the situation is less clear.

Lunder the additional assumption that V' £ 0! V' = 0 configurations are not geometric at all.
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Motivation

Motivation (l11)
This construction is used in discrete (spin foam) models of quantum gravity.
One introduces a triangulation of spacetime and integrates 4% over triangles

»A4B(x) = ¥4B= / A48 € s50(4) ~ A*R?
A

One then imposes the constraints
ABNCD
eapcpIABEEP =0

it A = /A" or A and A\’ share an edge; the remaining constraints can be replaced
by the “closure constraint”
AB

ACA
These constraints lead to the Barrett-Crane model (Barrett/Crane 1997).
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Motivation

Motivation (1V)

Recently, new spin foam models (EPR(L)/FK) have been proposed; these rely on
the replacement of quadratic constraints on Z‘gB by linear constraints:

na(A)TAB(A)Y =0 VA CA,

where n4(A) is the normal to the tetrahedron A.

These are stronger than the quadratic constraints; they restrict Y4B to the

discrete analog of
S4B — ted neP.

Our aim is to extend this construction to the classical continuum theory.
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The construction Continuum construction

Continuum construction

We need to introduce a basis of 1-forms e (i.e. we assume det(e’') # 0).
Equivalently, we have a basis of 3-forms

E _F c cde f

_ D
NAdef = €EADEF€g €, efa €q € N Ade f

Claim 1. For a basis of 3-forms n 4, the general solution to
NaderSa =0 V{a,b} C {d,e, f}

IS
AB A _B]
i = Gabe[ e,

a

where e is defined in terms of n4 as above. Note that G, = Gap(T).
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The construction Continuum construction

Continuum construction (I1)
One could try a linear redefinition e2 = \,E to identify this general solution

»AB — Gabe[AebB]

a

with 348 = + B4 A EB, but this is not possible in general; one needs additional
conditions.

Imposing the additional three constraints

DY naerEy’ =0, e€{0,1,2} fixed.
b {a.f1e{b.e}

implies that G4, (x) = c(x); can absorb this by pointwise rescaling? E4 = \/|cle?.

Note that c(z) = 0 at some points is not excluded, which will lead to EA = 0 at these points.
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The construction Discrete construction

Discrete construction

The translation of the constraints into the discretised variables is straightforward.
Introduce a triangulation, integrate 4% over triangles and n4 over tetrahedra

S50, nager = TP(A), na(a)
The discrete analogue of
naderSiy =0 V{a,b} C {d,e, f}
is (essentially by construction) the set of linear constraints used in EPR(L)/FK

na(A)ZAP(A)=0 VA CA

Steffen Gielen Classical GR as BF-Plebanski theory with linear constraints 11/14



The construction Discrete construction

Discrete construction (I1)

More interestingly, the remaining constraints would take the form

Z na ZAB(AAj) =0

{i,J} ZA

Here, we label the tetrahedra in a 4-simplex by A, B, C, D, E; there are five of
these constraints per simplex (where A is replaced by B, C, D, E respectively).

Result: These constraints follow from the EPR(L)/FK linear constraints, the
closure constraint on X45B(A), plus an analogous “4D closure constraint”

A(AA) +na(AB) + na(Ac) + na(Ap) + na(Ag) =0

which can be given a clear geometric motivation, just as closure on 345 |
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Summary

Summary

Introducing a basis of 3-forms at each point, one can give a formulation of
classical GR as BF theory plus linear constraints.

The discrete version of the same action leads to variables X4B(A), na(A4),
which have to be constrained by the EPR(L)/FK linear constraints, plus a
closure constraint on both 348 and n4, to reproduce the discrete analog of
the continuum constraints.

The 4D closure constraint suggests a new formulation in which the normals
n 4 are given a fully geometric role.

Outlook: Canonical analysis of the continuum action; implications for spin
foam models: relation to new GFT constructions; relation of our constraints
to “edge simplicity” (Dittrich/Ryan), . . .
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Thank you!



