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Motivation

Motivation

In three dimensions, general relativity is topological.

S =
1

16πG

∫
Σ

εABCE
A ∧RBC[ω]

Quantisation of such a theory is well understood.
Idea: Try to write general relativity in 4D as a constrained topological theory

S =

∫
Σ

BAB ∧RAB[ω] + λαCα[B];

the constraints should enforce BAB = 1
16πGε

AB
CDE

C ∧ ED to recover GR.

Addition of a Holst term is straightforward; then need ΣAB = 1
8πγGE

A ∧ EB,

where ΣAB = 1
1±γ2

(
BAB − γ

2ε
AB

CDB
CD
)
.
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Motivation

Motivation (II)

Traditional (Plebanski) formulation: Use quadratic constraints

εABCDΣABab ΣCDcd = V εabcd

These constraints have two separate sectors of solutions1

either ΣAB = ±eA ∧ eB or ΣAB = ±1

2
εABCDe

C ∧ eD

for some set of 1-forms eA. Classically, one can consistently remain within the
“GR” sector; quantum mechanically, the situation is less clear.

1under the additional assumption that V 6= 0! V = 0 configurations are not geometric at all.
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Motivation

Motivation (III)
This construction is used in discrete (spin foam) models of quantum gravity.
One introduces a triangulation of spacetime and integrates ΣAB over triangles

ΣABab (x) ⇒ ΣAB4 ≡
∫
4

ΣAB ∈ so(4) ' Λ2R4

One then imposes the constraints

εABCDΣAB4 ΣCD4′ = 0

if 4 = 4′ or 4 and 4′ share an edge; the remaining constraints can be replaced
by the “closure constraint” ∑

4⊂,

ΣAB4 = 0.

These constraints lead to the Barrett-Crane model (Barrett/Crane 1997).
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Motivation

Motivation (IV)

Recently, new spin foam models (EPR(L)/FK) have been proposed; these rely on
the replacement of quadratic constraints on ΣAB4 by linear constraints:

nA(,)ΣAB(4) = 0 ∀ 4 ⊂ ,,

where nA(,) is the normal to the tetrahedron ,.

These are stronger than the quadratic constraints; they restrict ΣAB to the
discrete analog of

ΣAB = ±eA ∧ eB.
Our aim is to extend this construction to the classical continuum theory.
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The construction Continuum construction

Continuum construction

We need to introduce a basis of 1-forms eAa (i.e. we assume det(eAa ) 6= 0).
Equivalently, we have a basis of 3-forms

nAdef ≡ εADEFeDd eEe eFf , ecA ∼ εcdefnAdef

Claim 1. For a basis of 3-forms nA, the general solution to

nAdefΣABab = 0 ∀{a, b} ⊂ {d, e, f}

is
ΣABab = Gabe

[A
a e

B]
b ,

where eA is defined in terms of nA as above. Note that Gab = Gab(x).
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The construction Continuum construction

Continuum construction (II)
One could try a linear redefinition eAa = λaE

A
a to identify this general solution

ΣABab = Gabe
[A
a e

B]
b

with ΣAB = ±EA ∧EB, but this is not possible in general; one needs additional
conditions.

Imposing the additional three constraints∑
b

∑
{a,f}6∈{b,e}

nAbefΣABab = 0, e ∈ {0, 1, 2} fixed.

implies that Gab(x) = c(x); can absorb this by pointwise rescaling2 EA =
√
|c|eA.

2Note that c(x) = 0 at some points is not excluded, which will lead to EA = 0 at these points.
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The construction Discrete construction

Discrete construction

The translation of the constraints into the discretised variables is straightforward.
Introduce a triangulation, integrate ΣAB over triangles and nA over tetrahedra

ΣABab , nAdef ⇒ ΣAB(4), nA(,)

The discrete analogue of

nAdefΣABab = 0 ∀{a, b} ⊂ {d, e, f}

is (essentially by construction) the set of linear constraints used in EPR(L)/FK

nA(,)ΣAB(4) = 0 ∀ 4 ⊂ ,
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The construction Discrete construction

Discrete construction (II)

More interestingly, the remaining constraints would take the form∑
{i,j}63A

nA(,i)Σ
AB(4Aj) = 0

Here, we label the tetrahedra in a 4-simplex by A,B,C,D,E; there are five of
these constraints per simplex (where A is replaced by B,C,D,E respectively).

Result: These constraints follow from the EPR(L)/FK linear constraints, the
closure constraint on ΣAB(4), plus an analogous “4D closure constraint”

nA(,A) + nA(,B) + nA(,C) + nA(,D) + nA(,E) = 0

which can be given a clear geometric motivation, just as closure on ΣAB !
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Summary

Summary

• Introducing a basis of 3-forms at each point, one can give a formulation of
classical GR as BF theory plus linear constraints.

• The discrete version of the same action leads to variables ΣAB(4), nA(,),
which have to be constrained by the EPR(L)/FK linear constraints, plus a
closure constraint on both ΣAB and nA, to reproduce the discrete analog of
the continuum constraints.

• The 4D closure constraint suggests a new formulation in which the normals
nA are given a fully geometric role.

• Outlook: Canonical analysis of the continuum action; implications for spin
foam models; relation to new GFT constructions; relation of our constraints
to “edge simplicity” (Dittrich/Ryan), . . .
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Thank you!


