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Preliminaries

We consider:
e (M* g) a 4-dim. spacetime.
@ S a compact, without boundary, embedded spacelike surface in
(M*, g).

- =
e k, l:two normal, future-pointing lightlike vector fields s.t.
- =
g(l, k)=-1

° A? and AT>: associated shape operators.

S is called Marginally Outer Trapped Surface (MOTS) J

when trace(A—g) =0 and trace(A?) = 0 everywhere, or viceversa.

Note: MOTS = ||H| = 0, but the converse does not hold.
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Preliminaries

A Marginally Outer Trapped Tube (MOTT)
is a 3-dimensional smooth manifold G which admits a foliation by surfaces
{Sx : A € A} s.t. there is a smooth immersion @ : G — M* satisfying:

@ each ©(Sy) (A € A)isa MOTS in M*,
Q@ D(SA)ND(S,) =0 for any A # p.

The causal character of the MOTT may vary from point to point.
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Targets of the talk

To obtain new examples MOTS and MOTT in a closed
Friedman-Lemaftre-Robertson-Walker 4-spacetime. J
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Targets of the talk

To obtain new examples MOTS and MOTT in a closed
Friedman-Lemaftre-Robertson-Walker 4-spacetime. J

Firstly, by using CMC surfaces in S3.

Secondly, by using the classical Hopf map.
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CMC surfaces in S3

Let us consider:
e a smooth function f: I C R — (0,00), t €1,

e a 3-dim. Riemannian manifold (M3,g3),

e the Generalized-Robertson-Walker 4-spacetime m;‘ =1 x M3 with line
element g, = —dt? + f2gs, (f =scale factor!)

e a surface S and an immersion,

s 2 M3
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CMC surfaces in S3

Let us consider:
e a smooth function f: I C R — (0,00), t €1,

e a 3-dim. Riemannian manifold (M3,g3),

e the Generalized-Robertson-Walker 4-spacetime m;‘ =1 x M3 with line
element g, = —dt? + f2gs, (f =scale factor!)
e a surface S and an immersion, and for a fixed t, € I,

s & M3 B M

= ¢=1Yog
p = (to,p)

. . . . b .
being ¢ an immersion of S in M in the t = t, slice.
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Using CMC surfaces in

Recall
P 4
S HLME M, d:=voo.

If l:lq, and l:’l(‘0 stand for the mean curvature vectors associated with ¢ and
@, respectively, one obtains
n _ H@(p) f,(to)

HoP) =T,y ¥ fity) Qtleom- W
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Using CMC surfaces in

Recall
P 4
S HLME M, d:=voo.

If l:lq, and l:’l(‘0 stand for the mean curvature vectors associated with ¢ and

@, respectively, one obtains

. H /(to
HdJ(P) = fz(?t(f)) + f((to)) t|(t0,p)- (1)

Theorem

A surface ¢ : S — (ﬂi, —dt? 4 f2g3) contained in a to-slice satisfies
|Hgll =0 <= @ : S — M3 has constant mean curvature with
IFoll = If(to)!.
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Using CMC surfaces in

Corollary

There exist MOTS with arbitrary genus in closed (M3 = S3) FLRW
spacetimes.
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Using CMC surfaces in

Corollary
There exist MOTS with arbitrary genus in closed (M3 = S3) FLRW

spacetimes.

[§] H.B. Lawson , Complete Minimal Surfaces in S3, Annals of Math. 92
(1970) 335-374.

[§] A. Butscher, F. Pacard, Doubling Constant Mean Curvature Tori in
S3, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (5) Vol. V (2006), 611-638.

Proof: By the fact that there exist embedded, compact surfaces with

(small) constant mean curvature and arbitrary genus in S3, we can obtain

MOTS with arbitrary genus in closed FLRW (I x S3, —dt? + f2g3) (in

t =t, slices).
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Examples of MOTT in closed FLRW foliated by tori with

different causality

Let C be the complex numbers, with i = y/—1, |z| the modulus of z € C, Z

its complex conjugate.

S® ={(z,w) € C?: |z|? + [w|? = 1}, with standard metric g3.

Recall the CMC embedded torus C,, in S* given by
Cu:={(z1,22) €S® C C?: |z1] = cos(u), |zo| =sin(u)},

u € (0,7/2), with mean curvature H]jluH = |2 cot(2u)].
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Define

h:1— (0,7/2), h(t) = %arcCot <flét)> _ TZ[ _ %arctan (flét)> :

And now, the embedding

x:Ix St xSt — —1x¢S3,
x(t, e, e™) = (t,e'% cos(h(t)), e'Vsin(h(t))) .
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Using CMC surfaces in

Define

h:1— (0,7/2), h(t) = %arcCot <f/£t)> _ TZ[ _ %arctan (flét)> :

And now, the embedding

x:Ix St xSt — —1x¢S3,
x(t, e, e™) = (t,e'% cos(h(t)), e'Vsin(h(t))) .

For each t € I, the surface ¢ =x(t,—, —):S! x St — m;l, is a torus,
embedded in the t-slice, with constant mean curvature
[H | = |2 cot(2u) [mn )| = [F/(1)].
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Using CMC surfaces in

Define

h:1— (0,7/2), h(t) = %arcCot <f/£t)> _ TZ[ _ %arctan (flét)> :

And now, the embedding

x:Ix St xSt — —1x¢S3,
x(t, e, e™) = (t,e'% cos(h(t)), e'Vsin(h(t))) .

For each t € I, the surface ¢ =x(t,—, —):S! x St — m;l, is a torus,
embedded in the t-slice, with constant mean curvature
[H | = |2 cot(2u) [mn )| = [F/(1)].

By our theorem, each torus is a MOTS, and therefore, x is a
MOTT.
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Using CMC surfaces in

The induced metric is:

ga (Xt Xt) 0 0
XG4 = 0 (f(t) cos(h(t)))? 0 ,
0 0 (f(t) sin(h(t)))?

The causal character depends only on xy:

1 2
z(t) = Galxe, x¢) = —1+ (M) .
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Using CMC surfaces in

F(E)F"(t) >2

z(t) = ga(Xt. Xt) = -1+ <4—|—f’(t)2

@ Given a,b > 0 such that a2 = 4 + b2, define the function
f:I1=R — (0,00), f(t) = acosh(t) + bsinh(t). Then, z(t) = 0.

Therefore, Xt is everywhere lightlike.
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Using CMC surfaces in

FOF7(t) )

2(0) == Galxe,xe) = 1+ <
@ Given a,b > 0 such that a2 = 4 + b2, define the function
f:I1=R — (0,00), f(t) = acosh(t) + bsinh(t). Then, z(t) = 0.

Therefore, Xt is everywhere lightlike.

@ Define the function f: (—1,1) — (0, c0), f(t) = T e By simple
computations, we obtain z(t) > 3, for any t € (—1, 1), and therefore

Xt is always spacelike.
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Using CMC surfaces in

© Take real constants c¢1, co> > 0. Then, the function f: R — (0, co0),
2
f(t) = Iczlt2 + c1t + co is well-defined. A simple computation shows

z(t) = —3/4. This implies that ¥ is everywhere timelike.
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Using CMC surfaces in

© Take real constants c¢1, co> > 0. Then, the function f: R — (0, co0),
2

f(t) = 1242

z(t) = —3/4. This implies that ¥ is everywhere timelike.

+ ci1t + co is well-defined. A simple computation shows

@ Given the function f: R — (0, 00), f(t) =3 + cos(2t). A
straightforward computation gives

_ fOF7(t)\° 4cos?(2t)(3 + cos(2t))?
At) =1 <4 + f'(t)2) = T B s

Finally, it is easy to check z(0) = 15 and z(7t/4) = —1. In this case,

the causal character changes with time.
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The classical Hopf map

S2(1/2) ={(z,x) € C x R : |z|? + x? = 1/4}, with standard metric g, (of
radius 1/2.

The classical Hopf map is

1 1
S o $2(1/2), mlzow) = (zW, i 5|w|2).
@ 7tis a Riemannian submersion.

@ For each (z,a) € S?(1/2), then m{(z, a)} = closed geodesic in S3.
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Extending 7t to a new submersion

(8% g3)

|

(S?(1/2), g2)
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Extending 7t to a new submersion

(S3, g3) (—1 x¢ S3, —dt? + f2g3) (t,p)

I owen |

(S2(1/2),92) (1 x¢S*(1/2), —dt* +f2go)  (t, 7(p))
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Extending 7t to a new submersion

(S3, g3) (—1 x¢ S3, —dt? + f2g3) (t,p)

I owen |

(S%(1/2),92) (I x¢S%(1/2), —dt* + f2ga)  (t,7i(p))
Next, we consider a curve o in —I x¢ S?(1/2),

—IXfS3

|

JcR  —X —Ix¢S%(1/2)
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Extending 7t to a new submersion

(S3, g3) (—1 x¢ S3, —dt? + f2g3) (t,p)

I owen |

(S%(1/2), g2) (—I x¢ S?(1/2), —dt? + f2g2)  (t, 7(p))
Next, we consider a curve & in —I x¢ S?(1/2), and its pullback:

o= xS ——  —Ix¢S3

| |7
JcR  —X —Ix¢S%(1/2)

The geometric elements of « determine the properties of the mean
curvature vector of 7" «.
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Using the Hopf map

Ta=] xSt ——  —Ix;S3

l s

X

JCR — 5 —Ix¢S%(1/2)
For instance, if « is embedded and open / closed, then 7T* () is an
embedded cylinder / torus in —I x¢ S,

These surfaces may not be contained in a single t-slice.
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Using the Hopf map

Consider a unit spacelike Frenet curve.

(=1 x¢ S3 —dt? + f2g3)

|7

] —— (=1 x¢S%(1/2), —dt? + f2g,)
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Using the Hopf map

Consider a unit spacelike Frenet curve. Let 3 be a horizontal lift of «.

J —P s (<D xsS%, —dt? + f2g3)

H [

] —— (=1 x¢S%(1/2), —dt? + f2g,)
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Using the Hopf map

Consider a unit spacelike Frenet curve. Let 3 be a horizontal lift of «.

J —P s (<D xsS%, —dt? + f2g3)

H [

] —— (=1 x¢S%(1/2), —dt? + f2g,)
Also, for each e'® e S, the map
To:—Ix¢S® = —Ix¢S3 Tolt, (z,w)) = (t, (€92, "))
is an isometry. Now, define:
b7 (o) =] xSt = —Ix¢ 8%, ¢(s,0) =To(B(s)).

¢ is just a parametrization of the surface 7T ().
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Using the Hopf map

If g5 = —dt? + f2g, is the line element, let oc: ] C R — —I x¢ S?(1/2) be
a unit spacelike Frenet curve with Frenet apparatus {T = &, N, B} and «,

T, i.e.
V1T =€e2kN, V1IN =«kT+e€31B, V1B =—etN,

where €3 = g3(N,N), €3 =93(B,B), eg = —e3 =41, and {T,N, B} is a

positive basis along «.
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Using the Hopf map

() =] x St b (—I x5 S3,g, = —dt? + f2g3)

& (C1x: S2(1/2), G5 = —at? + f2go)

e

Let N and B be horizontal lifts of N and B, resp., along f3.

Lemma

The mean curvature vector of ¢ is given by

N €2 f/_ = C €3 f_ T B
Ho =5 (x+ 503000 N) ) (To)uR + 22 {500, B) ) (To).B
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Using the Hopf map

Proposition

The mean curvature vector Hy, satisfies ||Hg || = 0 iff

/ 2 / 2
(c+ Fosn) = (Fostem) o0
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Final remarks

We obtained an open embedded surface with null mean curvature vector,
and crossing two regions (expanding and conllapsing).
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Final remarks

We obtained an open embedded surface with null mean curvature vector,
and crossing two regions (expanding and conllapsing).

Open problem
To obtain an explicit MOTS in the 4-dim closed FLRW spacetime, which

is not contained in any t-slice, from a closed curve in the toy model
—I x¢S%(1/2).
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Conclusions

@ There exist MOTS in closed FLRW 4-spacetimes embedded in
to-slices with arbitrary topology.

@ This leads to MOTT in closed FLRW 4-spacetimes.

e From a curve in a (toy model) closed FLRW 3-spacetime
o0 ] — (=1 x5 S?(1/2), —dt? + f2g,), it is possible to construct
embedded cylinders and tori in the closed FLRW 4-spacetime
(—I x¢ S3, —dt? + f2g3) with some control of the mean curvature
vector.

@ Problem: to construct such a tori which is also a MOTS.

[3] J.L. Flores, S. Haesen, M. Ortega, Class. Quantum Grav. 27 (2010)
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Using the Hopf map

Thank you very much

for your attention!!
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