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Plan of the talk

Gravity ↔ Thermodynamics

Bekenstein Entropy-Area relation for a Black-Hole

Clausius relation and Equipartition of energy ↔ Einstein
equations

Quantum corrections to Entropy

Induced modified Friedmann equations

Investigation of the GSL in such contexts.
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Thermodynamical properties of Black Holes

Black holes and entropy
J.D. Bekenstein Phys. Rev. D 7, 2333-2346, 1973
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Thermodynamical properties of Black Holes

Black holes and entropy
J.D. Bekenstein Phys. Rev. D 7, 2333-2346, 1973

SBH = kB
A

4l2pl

Measure of information about a black-hole interior which is
inaccessible to an exterior observer
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Thermodynamical properties of Black Holes

Black holes and entropy
J.D. Bekenstein Phys. Rev. D 7, 2333-2346, 1973

SBH = kB
A

4l2pl

Measure of information about a black-hole interior which is
inaccessible to an exterior observer

Particle creation by black holes
S.W. Hawking Commun. Math. Phys. 43, 199 (1975)

T =
~c3

GkB

1

8πM

Black holes emit thermal radiation

kB stands for the Boltzmann constant, A the area of the horizon, lpl =

p

G~/c3 the Planck’s length and M the

BH massNinfa Radicella ERE 2010
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Generalised Second law of Thermodynamics (GSL)

Generalized second law of thermodynamics in black-hole physics
J.D. Bekenstein Phys. Rev. D 9, 3292 (1974)

GLS

The sum of ordinary entropy outside black holes and the total
black hole entropy never decreases

Moreover, the GSL predicted that the emergent Hawking
radiation entropy shall more than compensate for the drop in
black hole entropy.
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Thermodynamical properties of horizons

G.W. Gibbons and S.W. Hawking Phys. Rev. D, 15, 2738, 1977
P.C.W. DaviesClass. Quantum Grav. 4 L225, 1987
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Thermodynamical properties of horizons

G.W. Gibbons and S.W. Hawking Phys. Rev. D, 15, 2738, 1977
P.C.W. DaviesClass. Quantum Grav. 4 L225, 1987

Temperature for apparent horizon in a FRW Universe

They show that there is indeed a Hawking radiation with
temperature T = 1/2πrA, for locally defined apparent horizon of
a Friedmann-Robertson-Walker universe with any spatial
curvature

rA is the apparent horizon radius

Cosmological horizons and the generalised second law of
thermodynamics Rong-Gen Cai, Li-Ming Caob, Ya-Peng Hu Class.
Quantum Grav. 26, 155018, 2009
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Thermodynamics and Gravity

Thermodynamics of space-time: The Einstein equation of state
T. Jacobson Phys. Rev. Lett., 75:1260, 1995

Formulation of the Einstein’s equations from the Clausius
relation

δQ = TdS
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Thermodynamics and Gravity

Thermodynamics of space-time: The Einstein equation of state
T. Jacobson Phys. Rev. Lett., 75:1260, 1995

Formulation of the Einstein’s equations from the Clausius
relation

δQ = TdS

Surface density of spacetime degrees of freedom from equipartition
law in theories of gravity
T. Padmanabhan arXiv:1003.5665v1 [gr-qc], 2010

Assumption of the the field equations and derivation of the
equipartition law

E =
1

2
nkBT
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Quantum entropy corrections

Quantum corrections to the semi-classical entropy-law
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Quantum entropy corrections

Quantum corrections to the semi-classical entropy-law

Logarithmic corrections arise from loop quantum gravity
due to thermal equilibrium fluctuations and quantum
fluctuations

S ∝
[

A

4l2pl

+ α ln
A

4l2pl

]

.

power-law corrections appear in dealing with the
entanglement of quantum fields in and out the horizon

S ∝ A

4l2pl

[

1 − KαA1−α/2

]

.

In the expressions above, α denotes a dimensionless
parameter whose value is currently under debate.
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Towards modified Friedmann equations

We wish to examine thermodynamical behavior of the system
consisting in the apparent horizon of a spatially flat FRW
universe and the fluid within it.

The FRW metric can be written as

ds2 = habdxadxb + r̃2dΩ2,

where r̃ = a(t)r and hab = diag(−1, a(t)2).
The apparent horizon is

r̃AH =
c

H
,

where H = ȧ/a denotes the Hubble function.
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Energy

In both Clausius relation and equipartition principle, the left
hand side represents the amount of energy that crosses the
apparent horizon within a time interval dt in which the apparent
horizon evolves from r̃AH to r̃AH + dr̃AH

dE = AAHTµνk
µkνdt .
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Energy

In both Clausius relation and equipartition principle, the left
hand side represents the amount of energy that crosses the
apparent horizon within a time interval dt in which the apparent
horizon evolves from r̃AH to r̃AH + dr̃AH

dE = AAHTµνk
µkνdt .

Tµν = (ρ + P/c2)uµuν + Pgµν/c2

ka is the generator of the horizon, ka = (1,−Hr, 0, 0).
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Energy

In both Clausius relation and equipartition principle, the left
hand side represents the amount of energy that crosses the
apparent horizon within a time interval dt in which the apparent
horizon evolves from r̃AH to r̃AH + dr̃AH

dE = AAHTµνk
µkνdt .

Tµν = (ρ + P/c2)uµuν + Pgµν/c2

ka is the generator of the horizon, ka = (1,−Hr, 0, 0).

It follows that

dE = 4πr̃3

(

ρ +
P

c2

)

H dt.
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Modified Friedmann equations

H2 [1 + g(α,H)] =
8πG

3
ρ,

Ḣ [1 + f(α,H)] = −4πG

(

ρ +
P

c2

)

,

the explicit expressions of f(α,H) and g(α,H) depend on both
the entropy corrections and the thermodynamical relation
employed
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Modified Friedmann equations

Table: Expressions for f(α, H) and g(α, H).

Logarithmic correction

Equipartition f(α, H) =
l
2

pα

2πc2 H2

{

1 − 1

2
ln

(

πc
2

l2pH2

)}

g(α, H) =
3l

2

pα

16πc2 H2

{

1 + 2

3
ln

(

πc
2

l2pH2

)}

Clausius f(α, H) =
l
2

pα

2πc2 H2

g(α, H) =
3l

2

pα

16πc2 H2

Power-law correction

Equipartition f(α, H) = −α3−α

4−α
(Hrc)

α−2

g(α, H) = − 3−α

4−α
(Hrc)

α−2

Clausius f(α, H) = −α

2
(Hrc)

α−2

g(α, H) = −(Hrc)
α−2
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GSL

Since the entropy depends on the area of the apparent horizon,
AAH ∝ H−2, it varies as

ṠH ∝ F (H)Ḣ.
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GSL

Since the entropy depends on the area of the apparent horizon,
AAH ∝ H−2, it varies as

ṠH ∝ F (H)Ḣ.

Using Friedmann equation, it can be cast in terms of the
Hubble parameter and the energy density and pressure of the
fluid that fills the universe

ṠH = KF(H)

H3

(

ρ +
P

c2

)

,

where K = 8π2c5kB
~

and F(H) depends on the entropy
corrections and the thermodynamic relation used to derive
Friedmann equations
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GSL for Logarithmic corrections (Equipartition)
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Figure: Plot of the sign of F depending on α along the Universe expansion, in the case of the logarithmic

correction and the equipartition principle. Here, x = l2p/AAH . The plot focuses on the range 0 < x < 0.1 but in

the remaining region the curves behave monotonically. Bear in mind that the smaller x, the older the universe is.
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GSL for Logarithmic corrections (Clausius)

0.00 0.02 0.04 0.06 0.08 0.10

-100

-50

0

50

100

x

Α

+

+
-

Ρ<0
-

Figure: Same as before but with the equipartition principle replaced
by Clausius relation

.
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GSL for Power-Law corrections (Equipartition)
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Figure: Sign of F depending on α along the Universe expansion in
the case of power-law correction and Clausius relation. Here
x = H0/H .

.
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GSL for Power-Law corrections (Clausius)
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Phantom fluid?

Could this possibility enlarge the available range for α?
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Phantom fluid?

Could this possibility enlarge the available range for α?
Logarithmic correction

Ṡ ∝ (1 + 4αx)
Ḣ

H3
−→ α > − 1

4x
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Phantom fluid?

Could this possibility enlarge the available range for α?
Logarithmic correction

Ṡ ∝ (1 + 4αx)
Ḣ

H3
−→ α > − 1

4x

0.00 0.02 0.04 0.06 0.08 0.10
-150

-100

-50

0

50

100

150

x

Α

-

Ρ<0
-

Ρ<0
-

Ρ<0
-

+
+

-

+

+

-

+

-

Ρ<0

-

Figure: Plot of the sign of F depending on α along the Universe expansion, in the case of the logarithmic

correction and the equipartition principle. Here, x = l2p/AAH . The plot focuses on the range 0 < x < 0.1 but in

the remaining region the curves behave monotonically. Bear in mind that the smaller x, the older the universe is.
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Phantom fluid?

But an inflationary period can be obtained for 4e3 < α < 8e5/2

with

N =

∫ tf

ti

Hdt = −1

3

∫ xf

xi

1

γ

1 + f(α, x)

1 + g(α, x)

dx

x
∼ 60.

N(α = 90) = 60 → γ ≃ −0.002.

Although this is just a rough estimate it makes clear that, given
an evolution for the equation of state parameter, it suffices that
it slightly crosses the phantom divide-line to get a convenient
amount of inflation.
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Particle Production?

On a phenomenological level particle production can be
described in terms of an effective bulk viscosity

Π = −3ζH,

with ζ the coefficient of bulk viscosity. Thus the total pressure is
then

P = p + Π,

Particle production in cosmology
Ya. B Zeldovich JETP Lett., 12:307, 1970

Cosmology with adiabatic matter creation
W Zimdahl and D. Pavón Phys. Lett. A, 176:57, 1993
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GSL with particle production

Entropy rate acquires a new term entirely due to the increase in
the number of particles

Ṡf =
R3Π2

Tf ζ

where R3 is the 3-spatial volume enclosed by the horizon and
the fluid is assumed in thermal equilibrium with the horizon.

GSL

Ṡ = ṠH + Ṡf = K
[

Π2

3ζc2H4
+

F
H3

(

ρ +
P

c2

)]
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Particle production for Logarithmic corrections

F(α, x) ≥ B

B − γ
√

x (1 + g(α, x))
,

where B = ζ
√

16πGlp/c
3.

It follows that particle production allows to enlarge the α range
from −1/4 → −1/2 in the case of Clausius relation, and from
−1/4 → −(2 + ln 4)−1 in case of equipartition of energy.
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Particle production for Logarithmic corrections
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Conclusions

GSL is a powerful tool to set bounds on astrophysical and
cosmological models
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Conclusions

GSL is a powerful tool to set bounds on astrophysical and
cosmological models

Our work aimed to discriminate among quantum
corrections by requiring, via a classical analysis, the GSL
to be fulfilled throughout the evolution of the Universe.

Logarithmic corrections: Negative values of α are
consistent with the GSL only up to α = −1/4 or α = −1/2
by allowing some amount of particle production.

Power-law corrections: 3 < α < 4 corresponds to a
power-law correction with an index between −1 and 0, that
has been analytically or numerically obtained
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