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1 Hǒrava-Lifshitz gravity and its extension to F(R) gravities

2 FLRW cosmology in extended Hǒrava-Lifshitz gravity
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Hǒrava-Lifshitz gravity

The theory introduces an anisotropic scaling on the time coordinate
with dynamical critical exponent z:

x i = bx i , t = bz t , (1)

The theory is not invariant under general diffeomorphisms but under
the so-called foliation-preserving diffeomorphisms:

δx i = ζ(x i , t) , δt = f (t) . (2)

The theory becomes power counting renormalizable in 3+1 spacetime
dimensions for z = 3. In such a case, [G ] = 0 while in GR, [G ] = −2.

It has been pointed that, in the IR limit, the full diffeomorphisms are
recovered, although the mechanism for the transition is not physically
clear.
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Extension of HL theory to F(R) gravity

Hǒrava-Lifshitz action:

S =

∫
d3x dt

√
g (3) NR̃ where

R̃ = KijK
ij − λK 2 + 2µ∇µ(nµ∇νnν − nν∇νnµ)− L(3)(g

(3)
ij ) , (3)

with L(3)(g
(3)
ij ) = E ijGijklE

kl .

As well as in General Relativity, a natural generalization of the
Hilbert-Einstein action is given by the so-called f (R) gravity,

SEH =

∫
d4x
√
−gR −→ S =

∫
d4x
√
−gf (R) , (4)

In the case of HL gravity, we could extend the above action to,

SHL =

∫
dt d3x

√
g (3) NR̃ −→ S =

1

2κ2

∫
dtd3x

√
g (3)NF (R̃)

(5)
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FLRW equations

Let us assume a flat FLRW spacetime, whose metric can be written as,

ds2 = −N2dt2 + a2(t)
3∑

i=1

(
dx i
)2
. (6)

Friedmann equations in Hǒrava-Lifshitz gravity are given by,

H2 =
κ2

3(3λ− 1)
ρm , Ḣ = − κ2

2(3λ− 1)
(ρm + pm) , (7)

while in its extended version, it yields,

0 = F (R̃)− 2(1− 3λ+ 3µ)
(
Ḣ + 3H2

)
F ′(R̃)− 2(1− 3λ) ˙̃RF ′′(R̃)+

2µ
(

˙̃R2F (3)(R̃) + ¨̃RF ′′(R̃)
)

+ κ2pm , (8)

0 = F (R̃)−6
[
(1− 3λ+ 3µ)H2 + µḢ

]
F ′(R̃)+6µH ˙̃RF ′′(R̃)−κ2ρm−

C

a3
,

(9)
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ρm , Ḣ = − κ2

2(3λ− 1)
(ρm + pm) , (7)

while in its extended version, it yields,

0 = F (R̃)− 2(1− 3λ+ 3µ)
(
Ḣ + 3H2

)
F ′(R̃)− 2(1− 3λ) ˙̃RF ′′(R̃)+

2µ
(

˙̃R2F (3)(R̃) + ¨̃RF ′′(R̃)
)

+ κ2pm , (8)

0 = F (R̃)−6
[
(1− 3λ+ 3µ)H2 + µḢ
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Cosmological solutions in f (R̃) Hǒrava-Lifshitz gravity

Late-time acceleration: ΛCDM model

Attending observational data, our Universe is in an accelerated expansion
phase, which is well described by the ΛCDM model, where the Hubble
parameter is given by,

H2 = G (η) = H2
0 +

κ2

3
ρ0a
−3 = H2

0 +
κ2

3
ρ0a
−3
0 e−3η . (10)

where η = ln a
a0

. (Standard F (R) gravity: E.Elizalde, P.Dunsby,
R.Goswani, S.Odintsov and DSG ’10)
Assuming the presence of a pressureless fluid ρm (wm = 0). First
Friedmann equation yields,

0 = (1− 3λ+ 3µ)F (R̃)− 2

(
1− 3λ+

3

2
µ

)
R̃ + 9µ(1− 3λ)H2

0

dF (R̃)

dR̃

−6µ(R̃ − 9µH2
0 )(R̃ − 3H2

0 (1− 3λ+ 6µ))
d2F (R̃)

d2R̃
−R − 3(1− 3λ+ 6µ)H2

0 , (11)
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d2F

dx2
+ (γ − (α + β + 1) x)
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where x =
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3H2
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Cosmological solutions in f (R̃) Hǒrava-Lifshitz gravity

Late-time acceleration:ΛCDM model

Solution,

F (R̃) = C1F (α, β, γ; x)+C2x
1−γF (α−γ+1, β−γ+1, 2−γ; x)+

1

κ1
R̃−2Λ .

(14)
with,

γ = −1

2
, α + β =

1− 3λ− 3
2µ

3µ
, αβ = −1 + 3(µ− λ)

6µ
,

κ1 = 3λ− 1 , Λ = −3H2
0 (1− 3λ+ 9µ)

2(1− 3λ+ 3µ)
. (15)

Nevertheless, if we impose µ = λ− 1
3 , the solution yields,

F (R̃) =
1

κ1
R̃ − 2Λ , with Λ =

3

2
(3λ− 1)H2

0 . (16)
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Cosmological solutions in f (R̃) Hǒrava-Lifshitz gravity

Late-time acceleration: Phantom dark energy

Hubble parameter in a phantom phase:

H(t) =
H0

ts − t
, (17)

Action in HL F (R̃) gravity,

F (R) = C1R
m+ + C2R

m− , where m± =
1− k1 ±

√
(k1 − 1)2 − 4k0

2
.

(18)
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Unifying inflation and late-time acceleration

As well as in standard F (R) gravity, we would like to extend the above
analysis to the whole cosmic history, by means of the so-called viable F (R)
models, extended to Hǒrava-Lifshitz gravity,

F (R̃) = R̃ + f (R̃) , (19)

(A. Starobinsky ’07, W. Hu and I. Sawicki ’07, S. Nojiri, S. Odintsov ’08)
We consider,

f (R̃) =
R̃n(αR̃n − β)

1 + γR̃n
, (20)

(E. Elizalde and DSG ’09)

Inflation: It is assumed that the curvature goes to infinity
→ limR̃→∞ F (R̃) = αR̃n. It is found,

H(t) =
h1

t
, where h1 =

2µ(n − 1)(2n − 1)

1− 3λ+ 6µ− 2n(1− 3λ+ 3µ)
. (21)

Inflation occurs for h1 > 1.
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models, extended to Hǒrava-Lifshitz gravity,

F (R̃) = R̃ + f (R̃) , (19)

(A. Starobinsky ’07, W. Hu and I. Sawicki ’07, S. Nojiri, S. Odintsov ’08)
We consider,

f (R̃) =
R̃n(αR̃n − β)

1 + γR̃n
, (20)

(E. Elizalde and DSG ’09)

Inflation: It is assumed that the curvature goes to infinity
→ limR̃→∞ F (R̃) = αR̃n. It is found,

H(t) =
h1

t
, where h1 =

2µ(n − 1)(2n − 1)

1− 3λ+ 6µ− 2n(1− 3λ+ 3µ)
. (21)

Inflation occurs for h1 > 1.
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D. Sáez-Gómez (ICE/CSIC) Cosmological solutions in F(R)-HL gravity 10 / 14



Unifying inflation and late-time acceleration

Late-time acceleration: The function presents a minimum at R̃0, that
can be interpreted as an effective cosmological constant,

R̃0 ∼
(
β

αγ

)1/4

, f ′(R̃) = 0 , f (R̃) = −2Λ ∼ −β
γ
, (22)

Then, the FLRW equations reduce to

H2 =
κ2

3(3λ− 1)
ρm +

2Λ

3(3λ− 1)
Ḣ = −κ2 ρm + pm

3λ− 1
, (23)

which look very similar to the standard FLRW equations in GR,
except for the parameter λ.
As it has been pointed out, at the current epoch the scalar R̃ is small,
so the theory is in the IR limit, where the parameter λ ∼ 1, and the
equations approach the standard ones.
Then, inflation and dark energy epochs are unified under the same
mechanism, due to extra terms in the gravitational action.
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Newton law corrections in F (R̃) gravity

We are interested to study the Newton law corrections due to the extra
scalar mode, as also appears in the usual F (R) gravity.

The F (R̃) action is rewritten as,

S =

∫
dt d3x

√
g (3) N

[
(1 + f ′(A))(R̃ − A) + A + f (A)

]
, (24)

by performing a conformal transformation g
(3)
ij = e−φg̃

(3)
ij , with

φ = 2
3 ln(1 + f ′(A)),

S =

∫
dt d3x

√
g (3) N

[
K̃ij K̃

ij − λK̃ 2 +

(
−1

2
+

3

2
λ− 3

2
µ

)
˙̃g ij(3)g̃

(3)
ij φ̇

+

(
3

4
− 9

4
λ+

9

2
µ

)
φ̇2 − V (φ) + L̃(g̃ (3), φ)

]
, (25)
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Newton law corrections in F (R̃) gravity

We are interested to study the Newton law corrections due to the extra
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Newton law corrections in F (R̃) gravity

Comparing with standard F (R) gravity, there is a new coupling between
the scalar field φ and the spatial metric g̃ (3)ij , which can be dropped if the
parameters are chosen to be,

µ = λ− 1

3
. (26)

By the Chameleon mechanism, we know that the corrections on the
Newton law can be restricted if the mass of the scalar field is large enough
compared with the curvature,

m2
φ =

1

2

d2V (φ)

dφ2
=

1 + f ′(A)

f ′′(A)
− A + f (A)

1 + f ′(A)
. (27)

On the Earth R̃ ∼ 10−50eV2. And for our model:
m2
φ ∼

γR̃2−n

n(n−1)α ∼ 1050n−100eV2 ,. Then, the Newton law corrections

coming from the scalar mode of f (R̃) can be avoided for n > 2.
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Summary

Hǒrava-Lifshitz gravity is extended to more general actions, following
the same motivations as in GR.

As in standard F (R) gravities, current cosmic acceleration can be well
explained as a consequence of extra geometrical terms in the action
which act at large scales. Even the inflationary epoch could be
explained by the same mechanism.

ΛCDM model is reproduced in F (R̃) gravity. The action reduces to
the linear one with a cosmological constant for a suitable choice of
the parameters of the theory. Other kind of solutions with a
dynamical EoS parameter are well reproduced too.

In the Einstein frame, it appears a new coupling term, absence in
standard gravity, which can be dropped by fixing the parameters.

Newtonian law corrections coming from the scalar mode of F (R̃) are
negligible for the so-called viable standard models.
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