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Abstract

Semisymmetric spaces are a natural generalisation of symmetric
spaces. For semisymmetric spaces in four dimensions with Lorentz
signature, the Weyl tensor is easily seen (via spinors) to have a
particularly simple quadratic property, which we call a special
semisymmetric Weyl tensor. Using dimensionally dependent tensor
identities, all (conformally) semisymmetric spaces are confirmed to
have special semisymmetric Weyl tensors for all signatures in four
dimensions. Furthermore, all Ricci-semisymmetric
spaces with special semisymmetric Weyl tensors are
shown to be semisymmetric for all signatures in four
dimensions.
Counterexamples demonstrate that these two proper-
ties have no direct generalisations in higher dimensions.



Background

It is known, for spaces in dimensions:
1. n ≥ 5 for all signatures
2. n = 4 for Lorentz signature (using spinors)

that semi-symmetry is equivalent to conformal semi-symmetry
when the Weyl conformal tensor C is non-zero:

∇[a∇b]Rcdef = 0⇐⇒ ∇[a∇b]Ccdef = 0 (if C 6= 0)

For dimensions n = 4, a single simple counterexample
is known, which has proper Riemannian signature. Us-
ing four-dimensional tensor identities, it is possible to
show precisely when the result fails for:

I proper Riemannian signature,
I neutral signature.



Spinor version (n = 4)

With XABCD = ΨABCD +RεA(BεC)D/6 and R is the Ricci scalar.

semi-symmetric conditions:

0 = 2ABΨCDEF = XAB(C
GΨDEF )G (1)

0 = 2A′B′ΨCDEF = ΦA′B′(C
GΨDEF )G (2)

0 = 2ABΦCDC′D′ = 2XAB(C
EΦD)EC′D′ + 2ΦAB(C′

E′
Φ|CD|D′)E′ (3)

The first two correspond to ∇[a∇b]Ccdef = 0 while
the third corresponds to ∇[a∇b]Rcd = 0 (“Ricci

semi-symmetry").

One can prove that [(1) and (2)] =⇒ (3) (C 6= 0))
(Eriksson & Senovilla CQG 27 027001 (2010))

Similarly [(1) and (3)] =⇒ (2) (C 6= 0))
(Edgar (2010))

The special cases —having a zero Weyl tensor —
have been discussed by J Åman (arXiv:1006.5684)
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‘Special semisymmetric’ Weyl tensor

Thus, one can concentrate on the expression (1)

0 = 2ABΨCDEF = XAB(C
GΨDEF )G

which is equivalent to

24ΨAB(C
GΨDEF )G = −R

(
εA(CΨDEF )B + εB(CΨDEF )A

)
.

Tensor expression:

Cef
k[aC

k
b]cd + Cef

k[cC
k
d]ab =

R

6

(
δ
[e
[bCa]

f ]
cd + δ

[e
[dCc]

f ]
ab

)
This can be straightforwardly generalised to all dimen-
sions n ≥ 4.



‘Special semisymmetric’ Weyl tensor

Definition (Edgar, 2010)
A Weyl tensor is said to be special semisymmetric if it satisfies:

Cef
k[aC

k
b]cd + Cef

k[cC
k
d]ab =

2R

n(n− 1)

(
δ
[e
[bCa]

f ]
cd + δ

[e
[dCc]

f ]
ab

)

Theorem (Edgar, 2010)
(Conformal) semi-symmetric spaces have special
semi-symmetric Weyl tensors in —and only in—
n = 4 dimensions, for all signatures.
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Proof

Proof. The conformal semisymmetric condition reads:

Cef
k[aC

k
b]cd + Cef

k[cC
k
d]ab −

2

n(n− 1)
R
(
δ
[e
[bCa]

f ]
cd + δ

[e
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f ]
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)
=

2
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(
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[e
i δ

f ]
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i
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[e
i δ

f ]
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i
d]ab − R̃

[e
[aC

f ]
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[e
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f ]
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)
where R̃ab ≡ Rab − R

n gab is the trace-free Ricci tensor.

This relation has a non-trivial trace:

0 = Rej
i[aC

i
b]cj +Rej

i[cC
i
j]ab



Use fddis (Edgar & Höglund, JMP 43 659 (2002))

This trace can be split into two parts:

0 = (n− 1)Cabi
(cR̃d)i − 2Ci

(cd)
[aR̃b]

i − 2δ
(c
[aC

d)i
b]
jR̃ij

CabijC
cdij + 4C[a

ij[cCb]ij
d] − 2R

n
Cab

cd =

1

2(n− 2)

(
(n− 3)R̃i[cCd]

iab + R̃i
[aCb]i

cd + 2R̃ijδ
[c
[aC

d]i
b]
j
)

But a basic fddi in n = 4 is C[ab
[cdδ

j]
i] = 0, from where

0 = 9R̃i
jC[ab

[cdδ
j]
i] =

2
(
R̃i[cCd]

iab + R̃i
[aCb]i

cd + 2R̃ijδ
[c
[aC

d]i
b]
j
)
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End of proof: Use more fddis!

Thus, the 2nd part of the trace becomes (n = 4)

CabijC
cdij + 4C[a

ij[cCb]ij
d] − R

2
Cab

cd = 0 . (?)

Surprisingy, this implies by itself that the Weyl tensor is (in n = 4)
special semi-symmetric: use again C[ab

[cdδ
j]
i] = 0 to build

Ci
j
efC[ab

[cdδ
j]
i] + Ci

j
abC[ef

[cdδ
j]
i] = 0

Managing this (and its trace) in a judicious manner, and using (?),
one can arrive at (n = 4)

Cef
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k
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k[cC
k
d]ab =

R
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)
This is the condition for the Weyl tensor to be special
semi-symmetric.
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Final Remarks

I There are explicit counterexamples showing that the above
properties are exclusive of n = 4.

I All the previous results hold for the more general classes of
(conformally) pseudo-symmetric spaces, defined by
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for some scalars L and L̃.

Observe that they correspond respectively to
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Thank you, Brian
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