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Abstract

Semisymmetric spaces are a natural generalisation of symmetric
spaces. For semisymmetric spaces in four dimensions with Lorentz
signature, the Weyl tensor is easily seen (via spinors) to have a
particularly simple quadratic property, which we call a special
semisymmetric Weyl tensor. Using dimensionally dependent tensor
identities, all (conformally) semisymmetric spaces are confirmed to
have special semisymmetric Weyl tensors for all signatures in four

dimensions. Furthermore, all Ricci-semisymmetric
spaces with special semisymmetric Weyl tensors are

shown to be semisymmetric for all signatures in four
dimensions.

Counterexamples demonstrate that these two proper-
ties have no direct generalisations in higher dimensions.




Background

It is known, for spaces in dimensions:
1. n > 5 for all signatures
2. n =4 for Lorentz signature (using spinors)

that semi-symmetry is equivalent to conformal semi-symmetry
when the Weyl conformal tensor C' is non-zero:

V[avb}Rcdef =0« V[avb]Ccdef =0 (if C 74 0)

For dimensions n = 4, a single simple counterexample
is known, which has proper Riemannian signature. Us-
ing four-dimensional tensor identities, it is possible to
show precisely when the result fails for:

> proper Riemannian signature,

» neutral signature.




Spinor version (n = 4)

With Xapcp = Yapep + Reapecyp/6 and R is the Ricci scalar.
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The special cases —having a zero Weyl tensor —
have been discussed by J Aman (arXiv:1006.5684)
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‘Special semisymmetric’ Weyl tensor

Thus, one can concentrate on the expression (1)
0=048%Ycper = Xapc“Uperc
which is equivalent to
249 45 c“Vprrc = —R (eac¥prr)p + e c¥pER)A) -
Tensor expression:
C 11 Ched + O 1 CF gy =
Jg’ (5[[§ca] Mea +85C4 ", )
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This can be straightforwardly generalised to all dimen-
sions n > 4.



‘Special semisymmetric’ Weyl tensor

Definition (Edgar, 2010)
A Weyl tensor is said to be special semisymmetric if it satisfies:

2R
e k e le le
C 11aC et + C 1 CF gty = nn—1) (5[bca]f]cd + 5[dCC]f]ab)




‘Special semisymmetric’ Weyl tensor

Definition (Edgar, 2010)
A Weyl tensor is said to be special semisymmetric if it satisfies:

2R
ef k ef k e~ f] e~ f]
O 41aCPpea + O 4oy = ——= ) (5[,50@] ed + 05C ab)

Theorem (Edgar, 2010)

(Conformal) semi-symmetric spaces have special
semi-symmetric Weyl tensors in —and only in—
n = 4 dimensions, for all signatures.

AP




Proof. The conformal semisymmetric condition reads:
2

n(n—1)
2

T -2 (REE‘S[J;] Clyjea + Rz[e‘s[{:] ' g, = R{Zcf]blcd - Ricﬂd}ab)

e e
R (5 £Coled + 5[dcc]ﬂa,,)

Cefk[ackb]cd + Cefk[cckd]ab - [

where Ry, = Ry — %gab is the trace-free Ricci tensor.

This relation has a non-trivial trace:
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0= Raji[acib]cj + Reji[ccij]ab



Use fddis (Edgar & Héglund, JMP 43 659 (2002))

This trace can be split into two parts:

0= (n — 1)Capi*RY — 201D, Ry’ — 25(°CV1 )7 Ry

y g 9
CabijC“M +4C1, 7 Cyy,7 — TRCade =

1 _ . T
<(n — 3)RZ[CCd]mb + Rl[acb]fd + 2Rij5[[a0dhbf>

2(n — 2)
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This trace can be split into two parts:
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y g 9
CabijC“M +4C1, 7 Cyy,7 — TRCade =

1 _ _ L g
2(n —2) (0= 9 RICT i+ RifuCyi + 200, C %)

But a basic fddi in n =4 is C, [Cdéjf =0, from where I‘\W \\\“M

0= 9Rz C[ab[cdé‘]] —

|
2 (Ri[acd}iab + R [aCb],- + 2Rij5[[acd]ib]j>




End of proof: Use more fddis!

Thus, the 2nd part of the trace becomes (n = 4)

CabijCCdij + 40[azj[ccb]”d] — gcade =0. (*)




End of proof: Use more fddis!

Thus, the 2nd part of the trace becomes (n = 4)
Caln’jCCdij + 4C[aij[ccb]ijd] - gCade =0. (*)

Surprisingy, this implies by itself that the Weyl tensor is (in n = 4)
special semi-symmetric: use again C’[ab[“léﬁ =0 to build

Cijefc[ab[Cddgﬂ + Cijabc[ef[Cddgﬂ =0

Managing this (and its trace) in a judicious manner, and using (%),

one can arrive at (n = 4) ww \\“m

C 11 Ced + C 1 CF gy =
R (e e
((5[1)0 ] ]cd + 5[dC] ]ab>

This is the condition for the Weyl tensor to be special
semi-symmetric.



Final Remarks

» There are explicit counterexamples showing that the above
properties are exclusive of n = 4.




Final Remarks

» There are explicit counterexamples showing that the above
properties are exclusive of n = 4.

» All the previous results hold for the more general classes of
(conformally) pseudo-symmetric spaces, defined by

Refk[aRkb]cd + Refk[chd]ab =L (5[[2Ra]ﬁcd + 6[[2Rc}f]ab>

R 11, C yeq + R 4. CF gy = L (5[[20(1} e+ ‘5[[2001 /l ab)

for some scalars L and L. NW“\\\“ ‘
Observe that they correspond respectively to o m

VEVA Ry = — L (5[[§Ra]f]cd + 35 Ry ]ab> ' )

= (40



Thank you, Brian
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