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SEMICLASSICAL GRAVITY

e Gravity as an effective field theory

S jd“xJ_( (R-2A)+¢,R* +¢,C,, ,C" +WR3 j
Kk =87G =871, =87/ m;,

Range of validity below energy scale M.

Results from separartion of low energy from high energy

gravitational quantum effects.

Terms consistent w gen covar. dimensionless coeffs

Energy expansion: higher and higher powers of derivatives

of the medtric.

e« Semiclassical limit: 1/N expansion in interaction w N fields
keeping constant (g = x4N| (Hartle-Horowitz 81)




SEMICLASSICAL EINSTEIN EQUATION

 Renormalization shifts coeffs up to square curvature tensors
effect of high energy modes of matter (4 ren const, exp)

G,lgl+Ng, —aA,lg]-PB,le]1=Kk(T,[gD,.

where 4 = j %y \/_CCdecha’ef

\/7 5gab

B = d’ R’
\/_ g, j x\/i

a a 1 a C a C a a
1 =0 -2 g (g mg) + &g DD, ~0'D" +G* )

faf;[g] = fab[g] + Fab[g]f (F counterterms from SDW series)



SEMICLASSICAL GRAVITY

« Semiclassical Einstein eq

G,lel=K(T,[g]..

Kk =8mG =871, =87/ m;,

e Square curvature, higher derivative, terms on rhs assumed:
high energy effects produce shifts in coeffs of EFT up to

curvature square (renormalization)

 Klein-Gordon eq. (field op Heisenberg picture)

(O —m* =ER)P=0

» Solutions of semiclassical gravity:

(Magabaqz» ‘/’>)




LIMITS OF SEMICLASSICAL GRAVITY

e Quantum fluctuations of stress tensor small:

If N (large) fields coupled to gravity
there are no fluctuations when N - «© G =GN - finite

Next to leading order is O(1/N)

(T*) =(T)Y* =O(1/ N)



NOISE KERNEL

* Noise kernel ph observable that measures quantum flucts
of stress tensor (free of ultraviolet divergencies)

{T,(x),T, ()} 0)=(0|T,, (x)]0) (0|, ()|0)

1
Nabcd (xﬂy) — §<O

(real and +ve semidefinite). It defines a
Gaussian stochastic tensor ¢,[g]

(§a)s =0 (€ (X)Sa (V) =N oy (%, 1)

e Symmetric, divergenceless, (traceless for conformal field)

S (X) =&, (%), ¢, (x) =0




STOCHASTIC GRAVITY

» Extend semiclassical Einstein equations to consistently
account for fluctuations of 7,

» Assume linear perturbation of semiclassical solution . * /.

« Einstein-Langevin equation; G,., =K(T),., +&)
GOg+h)=K(TV[g+h)),, +KkE,[g]
(02, —m* = ER)P=0

gth

it is gauge invariant ' =/, + 204,
Sab (g+h') :Sab (g+h)+LZSab (g)

* E-L can be derived by functional methods: CTP Influen. func.
open guantum system paradigm



SOLUTIONS OF E-L EQ & LARGE N

e E-L are stochastic equations and determine correlations
(%) = gy () + R [ dx' =g Gyt (x,x)E (x')

|Gy (Vg (9D, = Kb, (IR (), + R [[ Gl (e, X INT (', 1) Gy () |

-~
Intrinsic fluctuations 4+ Induced fluctuations

(flucts due to initial state, act) (due to matter field flucts, pas)

* |t can be shown (Roura-EV) that g. metric correl. in 1/N:

% <{ };ab (x), I’A’cd (y)}> =, (X)h, (1)),

Includes matter loops but no graviton loops.



LARGE N EXPANSION

* The large N expansion goes beyond a perturbative
expansion in the coupling constant

« Resums and rearranges Feynman perturbative
series, including self-energies

 For gravity, graviton loops are higher order than
matter loops. Zero orderl/N->0 : semiclassical gravity



LARGE N EXPANSION

e Perturbative Quantum Gravity

S = % d*x(d,hd"h+h(oh)...) +% [d'x@,0'0+m* @)+ [d'x(h@p) +...)
O(K) O(k?)




LARGE N EXPANSION

S = %jd‘*x(aahaah +h(dh)’...) +%ijd4x(aa¢ja“¢j +m’@’) +Zt:jd4x(h(6¢j)z +..)

Rescaled coupling: K =«kN - finite

N - N
O/ N) O(K’>/ N)

SN +
: : O(K>/ N)
+ ~—~ +
O(K* /| N?) O(K* | N?)

o~~~ + ...
OK*/N?)
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COSMOLOGY & DE SITTER

 Existence of early inflationary phase successfully explains
anisotropies of CMB and large scale structure.

* Present universe accelerated expansion can be driven by
a cosmological constant

» Geometry of both phases is close to de Sitter spacetime

« Cosmological perturbations in dS thus extensively studied



COSMOLOGICAL PERTURBATIONS IN
DE SITTER

« Standard analysis based on linearized calculation of two-point
metric perturbations (tree level). Tensor pert. do not couple to
matter fields (linear) (Starobinsky 79, Mukhanov 81,92)

* Need for loop corrections emphasized recently (test perturbat
th in dS, use CTP (in-in), stochastic gravity) (Weinberg 05,
Sloth 06, Seery 07, Urakawa-Maeda 08, Adshead 09,
Senatore-Zaldarriaga 09).

Discriminate different inflationary models with same tree
level resuts (Urakawa-Tanaka 09)



INTERACTING FIELD THEORIES IN DS

e Plagued with IR divergencies from loop diagrams
IR modes out-horizon undergo decohernce become classical
Using a Fokker-Planck eqg can go beyond (Starobinsky 86,
Starobinsky-Yokohama 94, Riotto-Sloth 08 also use 2Pl)

 Interacting dS invariant vacuum for cubic and quartic self-
Int well behaved in IR and stable (Marolf-Morrison 10), but for
for low-mass m < H perturbative series do not decrease:
superhorizon large fluctuations. Analogies in condensed
matter near a critical point (Burgess at al 10)

e Interacting scalar fields are unstable? (Polyakov 08,10)
But “in-out” propagators are IR divergent. Use “in-in” propag
Instabilties not present (Higuchi 09, Alvarez-Vidal 09,10)
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» Generally assumed dS backd not affected by large g corrects.

* There are claims that loop corrections could give significant
backreaction effects (Abramo 97,Losic-Unruh 05) Nonlinear
effects dom by infrared modes significant: may break dS
Invariance, screen cc (Tsamis-Woodard 96,05, but gauge
dependence Garriga-Tanaka 08)

* We study g metric perturbations around dS including matter
loops and keeping dS invariance (Perez-Nadal,Roura,EV 10)
In framework of large N app. Aim: find two-point f to O(1/N)
Consider free field interacting with gravity



DE SITTER CONFORMAL DIAGRAM

1 _ . . _
We get ds’ =m(—d/72 +dx* +sin’ y(d& +sin’ 6d¢4*))| -m<f<0, 0<x<m

covers entire dS. Closed univ. contracts for -m<pg<-m/2
expands for -n/2<i<0 flat, closed, open dS describe same

spacetime Iin diff coord. Any hypersurface has constant energy
density (unlike

other FRW).

i=-1
Conformal diagram of dS



DE SITTER GEOMETRY

« dS is an hyperboloid in (D+1)-Minkowski defined as
X" ()X*(x)=H?=1, 4,B=0,....D

Lorentz t

e define biscalar: |Z(x,x)=7,X"(x)X"(x)
invarinat under the dS group (isometry g) X" (g(x)) = A, X" (x)

e define Mink. distance |@°(x) =7, (X" () - X)) (X" () - X" ()
d>=2(1-2)

X (a(x)) =-X"(x)
antipodal




LORENTZ BOOST




DE SITTER BITENSORS

* physical distance in spatially flat coordinates is also:

d*(x,x")=e’"0, (xi (x)—x' (x') (xj (x)—x’ (x')

e geodesic distance (x,x):

p(x ) = [ dA (g (D A ()

(. Allen-Jacobson (86): Any maximamally symmetric )
bitensor is a linear combination of products of:

I’la(x,X'):Da/J, na'(xax'):Da'lua gab.(x,x'), gab(X,X'), ga.b.(x,x')

\ parallel-transports a vector from x’ to x along the geodesic )




DE SITTER GEOMETRY

e covariant derivatives of 0 n, =cot u(g,, —n,n,),
basic bitensors in dS (th) |[3,n, =-cscu(g,, +n,n,),
(Allen-Jacobson 86) 0,850 = (cs¢ 4 = cOt U)(g e + oty )-

» geodesic dist for spacelike geod.:

U=cos ' Z, -1<7Z<lI

can be def. for points not connected by geod z<-1

“a(x)

“la(y)
x=m

X' ~la(x)




NOISE KERNEL IN DE SITTER

e The two-point function of the stress tensor operator
(noise kernel):

0) —<0

1, (x)‘0> (0

N (56 = O 7, (0, T ) 7.0 (x]0)

In a de Sitter invariant vacuum is an observable maximally
symmetric bitensor,which may be written as

N o = PO 1,0 0, + Q)01 8., tH.1,E,,)
+ R(U)(1 1&g+ M1y &y + 1,158 F 1,1 E )
+ S(/J)(gac'gbd' + gbc'gad') + T(/'I)gabgc'd"

* The stress tensor operator:

X->X

: y 1 o 1 ,
T, (x)= hln,(gb U0, _Egabg ! 0.4, _Engabjﬂx)ﬂx)




NOISE KERNEL IN DE SITTER

 Since the stress tensor can be written as a coincidence limit
of the two-point function of the field and its derivatives, the
noise kernel is a coincidence limit of a four-point function of
the field, which may be written in terms of the Wightman

function [6" e = 0 |o)]




NOISE KERNEL IN DE SITTER

e Impose that vacuum is dS invariant and points spacelike
separated. Then Wightman funct is e.v. of observable, and
thus dS invariant biscalar wm) G* = G(u)

« Wightman funct satisfies KG eq:
|G "(1) + (D 1) cot G '(p2) = m*G(p2) = 0)

* Imposing that at coincidence limit diverges as in Minkowski

D 1+Z

- G(/'l) = Cm,DF£h+9h—;Ea 5

h, :%((1)—1)1\/(1)—1)2 —4m2)

where ML)

C =
"0 4mPPr(D/2)

It is the Wightman function of the Bunch-Davies vacuum



NOISE KERNEL IN DE SITTER

« Substituting into the noise kernel and using the dS invariant
expressions for the covariant derivatives, we obtain the
geodesic distance dependent functions of the noise
kernel bitensor:

P=2(G"—G'csc,u)2,

Q:—(G")2 +(G')2 (cscz,u—mz),

R :—G'csc,u(G"—G'csc,u),

S :(G')2 csc” U,

T :l(G")2 +(G')2(D_Scsc2 ,u—mzj+lm4G2.

2 2 2 /




NOISE KERNEL FOR SMALL MASSES

« Minimally coupled field, small mass, long distances

m<I1l(=H), Z<x-I
1 [(D)
m* (4m°*T(D/2)

iInfrared divergence of Bunch-Davies vacuum when m—->0

H4
PaQaRaS N?-l_O(mz)

& exp in powers of m  G(u) = +0(m")

T ~ const +O(m*)

noise kernel does not vanish at long distances d

 In Minkowski (Martin-EV 00) PORST. ]
here ok short distances (Z->1) &R, 5, W




NOISE KERNEL FOR MASSLESS FIELD

« Minimally coupled field, m=0, long distances d.
There is no dS invariant vacuum, choose
O(D)-inv vacuum (Allen-Folacci 87) [0),, a(0,)
It can be shown that (arb close to dS inv)

lim, ,0.0,G;=lim_ ,00,G.,

H4
P,Q,R,S,Trv?

vanishes at long distances, discontinuity in limit m=0

 Discontinuity is independent of state, at late times
a<0 T;zb O>a - limaqo a<0 T;zb O>a

discontinuity disappears if limit in parameter space
(Kirsten-Garriga 93) éR/m* - -2




RESULTS FOR NOISE KERNEL

* We have derived the stress tensor two-point function of a
free quantum field minimally coupled in dS in the BD state

e For small mass correlations have long range, decay like
inverse power of distance ¢ do not vanish if m=>0

« For m=0, on the contrary, decay like 4™ Discontinuity due to
Infrared divergence of the Bunch-Davies vacuum

 When H—>0 or short range recover Minkowski results



QUANTUM GRAVITATIONAL
FLUCTUATIONS

» To characterize gravitational fluctuations may compute
the two-point function of the linearized Riemann tensor.
This can be obtained from the two-point functions of the
Riccl, or Einstein, and the Weyl tensors.

e R “Yis gauge invariant: Lie derivative wrt arbitrary vector
field in dS background vanishes.

e Linearized Einstein G, and Weyl p
are also gauge invariant

e Tree level graviton two-point function using dS inv bitensors
IS known (Allen-Turyn 87,Antoniadis-Mottola 91)



QUANTUM GRAVITATIONAL
FLUCTUATIONS

E-Leq: |GV +Ah, —adV) - BBY =k(TV) +KE,[g]

o After order reduction for higher derivative terms:
in dS the counterterms do not contribute 4'[dS]1=B)[dS]1=0

* The linearized Einstein tensor two-point correlation
function directly related to noise kernel

(GO ()G (x), = %<{ G (), G5 () ~(GEV (NG (x)

_@8m’1,

N (x,x'
g p @ (X, X)




QUANTUM GRAVITATIONAL

FLUCTUATIONS
 Massl m=0, £=0 o) ey oL
assless  m =0, ¢ =0 kG0 6, (). -
long distances d> H™ ©  Nd*
elowmass m<«< H, =0 4’

long distances (G ()G (x), ~ L,"H'N " (Hd) 5w

l.e. long range correlations

* The two-point function for linerized Weyl tensor has been
computed at tree level TIHE
(Kouris 01) Waea CIW 3 () ~ L+ O (L
need loop corrections T




MINKOWSKI| AND SHORT DISTANCES
DE SITTER

e In Minkowski (Martin-EV 00),
also dS short distances take H - 0

L'

Nd*

a @' ' l—4 a c '
(G, (0)G (x), = (87)° ﬁN p o (X,X7) ~

1

Nd°®

<VVa(b1c)d (x)VV;z('lb)'c'd' (x") ~




RESULTS

» Our results give information on the quantum fluctuations of
the gravitational field in dS including matter loops.

e Neglect contribution from graviton loops. Implemented in
the context of large N, rescaling 7, =7,J/N and expanding in
1/N, or equivalently, stochastic gravity.



RESULTS

 All information is in the Riemann tensor two-point function.
Obtained from the Ricci (or Einstein) and Weyl tensors.

* The linearized Einstein tensor two-point f. directly related to
stress tensor correlations, includes matter one-loop order.

* \Weyl to one-loop needs to be computed, tree level is known.
e So far no evidence of breaking dS
e Long range correlations for low mass fields






MASSLESS LIMIT

e The field operator in spatially flat coordinates,

(?(t,)_c’) - J.d3]_€ (&kuk (t)eik o+ akuk (e s )

Klein-Gordon eq leads to

u, +3Hu, +(k2 /a’® +m2)uk =0

and the Wightman function at equal times:
, sin kr

G (x,x) = <0‘q&(z,f)q&(r,f’)|o> = " dik |uk( )

e Using conformal timeadn =dt and dS |, :"_I:er —
KG eq s 2
2 (kz + M ju =0

" !
u, ——u, t
k k 2,,2
H’n

7l




SMALL MASS

* Then defining U, =—— X, <—
a

" m2 1 —
KG eq becomes |Ax +£k2 ‘(*yj—z))(k =0

* At early times (inside):k [7>>1

X.() = —
k m

o

®11 BD vacuum

o At late times (out): k|7 |<<1 x.n =4 \n1" +B, (7[>, n,=1/2+9/4~m" | H®

-ve exp dominates X.(m=A4n|

—1+m?/3H?

e Match at horizon exit k(7.1 = k=a(n)H 4,

h

_ k—3/2+m2/3H2

w, () = HA, |n|""™"

_H [ k
_ks/z aH

jm2/3H2




SMALL MASS

» For physical distances larger than horizon

d=ar>H"

e Finally the Wightman function
(use dimensionless variable: kr):

4
H ( )—Zm2 /3H?
2
m

G'(t,%;t,X') = Hd

and the stress tensor two-point funct which depends on

T=...+lm4G2
2

decays like P L
l.e. In massless limit Is a constant at long distances




DE SITTER SPACETIME

 Maximally symmetric spacetime, isometry group O(D,1)
* Hyperboloid in (D+1)-MinkowskKi (points at const dist form origin)

—()(0)2+(X1)2+...+(XD)2 =H

ds’ :—(dXO)2 +(dX1)2 +...+(dXD)2

* Introduce spatially flat coordinates {t,xi}

X° = Lsinh(Hz‘) + lHemé}xixj :
H 2 ’ D
p_ 1 _ Ht ry.]
XP = = cosh(Ht) 5 He™"0,x'x X!
Xi=xith; i:l’_._,D—l;—oo<t,xl.<00 X+ X720
e Metric
dS2 — _dtz + eZthijdxidxj — a2(/7)(—d/72 + é;jdxidX'j) a= I;_l = th
17

conformal time adn =dt



DS AND COSMOLOGICAL CONSTANT

e Metric in dS is a sol of Einstein eq:

G,=-Ng,| |AN=[D-)(D-2)/2)H"

e Is a FRW model with a cosmological constant A\
It can be seen as a perfect fluid with 7 =7¢

T;zb :(£+p)uaub _pgab = /\gab
« Spatially flat coordinates do not cover the dS spacetime.
With conformal time 7=~ "™ (0)d: =-H" exp(-Hr) ; sSph coor (D=4)

1
H2172

ds® = (=dn® +dr’ +1*(d6” +sin 0dg*) )| -0 <n<0, 0<r<w

_ _ sin /j _ siny
e Define new coord 17 COS/7+COS/Y’ " cos/] +cos Y




NOISE KERNEL IN DE SITTER

 Since the stress tensor can be written as a coincidence limit
of the two-point function of the field and its derivatives, the
noise kernel is a coincidence limit of a four-point function of
the field, which may be written in terms of the Wightman

function [6" () = (O] @) 0)]

 Finally the noise kernel becomes
N,. =00.6'00,6¢"+0.0,6'0,0.G
-¢,(0.0,G'0°0,G" +m’0,G*0,G")

-¢..(0,0,G'0,0°G" +m’0,G"0,G)




